import gradio as gr import os import spaces from transformers import AutoTokenizer, TextIteratorStreamer from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = '''

CyberNative-AI/Colibri_8b_v0.1

This Space demonstrates the CyberSecurity-tuned model Colibri_8b_v0.1.

''' LICENSE = """

--- Colibri v0.1 is built on top of Dolphin Llama 3 """ PLACEHOLDER = """

Colibri_v0.1 Dolphin Meta llama3

Ask me anything...

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model with torch.autocast(device_type='cpu'): tokenizer = AutoTokenizer.from_pretrained("CyberNative-AI/Colibri_8b_v0.1_gptq_128_4bit") model = AutoGPTQForCausalLM.from_quantized("CyberNative-AI/Colibri_8b_v0.1_gptq_128_4bit", dtype=torch.bfloat16, device="cpu") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>") ] @spaces.GPU(duration=120) def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] conversation.append({"role": "system", "content": "You are Colibri, an advanced cybersecurity AI assistant developed by CyberNative AI."}) for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=0.7, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) #print(outputs) yield "".join(outputs) # Gradio block chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.6, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], examples=[ ['What are the two main methods used in the research to collect DKIM information?'], ['What is the primary purpose of OS fingerprinting using tools like Nmap, and why might it not always be 100% accurate?'], ['What is 9,000 * 9,000?'], ['What technique can be used to enumerate SMB shares within a Windows environment from a Windows client?'], ['What is the primary benefit of interleaving in cybersecurity education and training?'] ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()