File size: 8,476 Bytes
1a881d8
 
 
 
 
 
 
 
 
 
 
55ece2a
1a881d8
55ece2a
 
1a881d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ece2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a881d8
55ece2a
1a881d8
 
 
 
 
 
 
 
55ece2a
 
1a881d8
55ece2a
 
1a881d8
55ece2a
 
1a881d8
 
 
 
 
 
 
 
 
 
 
 
 
 
55ece2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    ABOUT_TEXT,
    TITLE,
    Training_Dataset,
    Testing_Type
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    with gr.Tabs(elem_classes="leaderboard-tabs") as leaderboard_tabs:
        for testing_type in Testing_Type:
            with gr.TabItem("Average Scores" if testing_type.value == "avg" else testing_type.name, elem_id=f"{testing_type.value}_Leaderboard"):
                if testing_type.value == "avg":
                    gr.Markdown("The scores presented in this tab are averaged scores across all datasets.")

                try:
                    leaderboard = Leaderboard(
                        value=dataframe[dataframe["Testing Type"] == testing_type.name],
                        datatype=[c.type for c in fields(AutoEvalColumn)],
                        select_columns=SelectColumns(
                            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
                            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
                            label="Select Columns to Display:",
                        ),
                        search_columns=[AutoEvalColumn.model_name.name],
                        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
                        filter_columns=[
                            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
                            ColumnFilter(AutoEvalColumn.training_dataset_type.name, type="checkboxgroup", label="Training Dataset"),
                            ColumnFilter(
                                AutoEvalColumn.model_parameters.name,
                                type="slider",
                                min=0,
                                max=10000,
                                default=["0", "100"],
                                label="Select the number of parameters (M)",
                            ),
                        ],
                        bool_checkboxgroup_label="Hide Models",
                        interactive=False,
                    )
                except:
                   gr.Markdown("There are no submissions for this testing type yet.")

def init_submissions():
    with gr.Column():
        with gr.Row():
            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

        with gr.Column():
            with gr.Accordion(
                f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    finished_eval_table = gr.components.Dataframe(
                        value=finished_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )

            with gr.Accordion(
                f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    pending_eval_table = gr.components.Dataframe(
                        value=pending_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )

    with gr.Row():
        gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name")
            model_link_textbox = gr.Textbox(label="Link to Model")
            model_backbone_textbox = gr.Dropdown(
                choices=["Original"],
                label="Model Backbone",
                value="Original",
                allow_custom_value=True,
            )

            model_parameter_number = gr.Number(label="Model Parameter Count (M)", precision=1, minimum=0)

            precision = gr.Dropdown(
                choices=[i.name for i in Precision],
                label="Precision",
                multiselect=False,
                value="float32",
                interactive=True,
            )
            paper_name_textbox = gr.Textbox(label="Paper Name")
            paper_link_textbox = gr.Textbox(label="Link To Paper")
            

        with gr.Column():
            training_dataset = gr.Dropdown(
                choices=[i.value for i in Training_Dataset if i.value != Training_Dataset.Other.value],
                label="Training Dataset",
                multiselect=False,
                value=Training_Dataset.XCL.value,
                interactive=True,
                allow_custom_value=True,
            )
            testing_type = gr.Dropdown(
                choices=[i.name for i in Testing_Type],
                label="Tested on",
                multiselect=False,
                value=Testing_Type.AVG.name,
                interactive=True,
            )
            cmap_value = gr.Number(label="cmAP Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
            auroc_value = gr.Number(label="AUROC Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
            t1acc_value = gr.Number(label="T1-Acc Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)

    submit_button = gr.Button("Submit Eval")
    submission_result = gr.Markdown()
    submit_button.click(
        fn=add_new_eval,
        inputs=[
            model_name_textbox,
            model_link_textbox,
            model_backbone_textbox,
            precision,
            model_parameter_number,
            paper_name_textbox,
            paper_link_textbox,
            training_dataset,
            testing_type,
            cmap_value,
            auroc_value,
            t1acc_value,
        ],
        outputs=submission_result,
    )

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="leaderboard-tab-table", id=0):
            init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="leaderboard-tab-table", id=2):
            gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="leaderboard-tab-table", id=3):
            init_submissions()

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch()