File size: 6,752 Bytes
1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 55ece2a 1a881d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_hyperlink
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
from src.about import Model_Backbone, Training_Dataset, Testing_Type
@dataclass
class EvalResult:
"""
Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # model_training_testing_precision (identifier for evaluations)
model_name: str
training_dataset_type: Training_Dataset
training_dataset: str
testing_type: Testing_Type
results: dict
paper_name: str = ""
model_link: str = ""
paper_link: str = ""
model_backbone_type: Model_Backbone = Model_Backbone.Other
model_backbone: str = ""
precision: Precision = Precision.Other
model_parameters: float = 0
model_type: ModelType = ModelType.Other # Pretrained, fine tuned, ...
date: str = "" # submission date of request file
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Extract evaluation config
model_name = config["model_name"]
training_dataset_type = Training_Dataset.from_str(config["training_dataset"])
if training_dataset_type.name != Training_Dataset.Other.name:
training_dataset = training_dataset_type.value
else:
training_dataset = config["training_dataset"]
testing_type = Testing_Type(config["testing_type"])
precision = Precision.from_str(config.get("model_dtype"))
eval_name = model_name + precision.value + training_dataset + testing_type.value
# Extract results
results = {}
for task in Tasks:
task = task.value
results[task.metric] = data["results"].get(task.metric, -1)
return self(
eval_name=eval_name,
model_name=model_name,
training_dataset_type=training_dataset_type,
training_dataset=training_dataset,
testing_type=testing_type,
precision=precision,
results=results,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
if self.training_dataset_type.name != Training_Dataset.Other.name:
training_dataset_request = self.training_dataset_type.name
else:
training_dataset_request = self.training_dataset
training_dataset_request = "_".join(training_dataset_request.split())
request_file = get_request_file_for_model(requests_path, self.model_name, self.precision.value, training_dataset_request, self.testing_type.value)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_parameters = request.get("model_parameters", 0)
self.model_link = request.get("model_link", "None")
self.model_backbone = request.get("model_backbone", "Unknown")
self.model_backbone_type = Model_Backbone.from_str(self.model_backbone)
self.paper_name = request.get("paper_name", "None")
self.paper_link = request.get("paper_link", "None")
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.model_name} with precision {self.precision.value}, training dataset {self.training_dataset} and testing type {self.testing_type.value}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value,
AutoEvalColumn.model_parameters.name: self.model_parameters,
AutoEvalColumn.model_name.name: self.model_name,
AutoEvalColumn.paper.name: make_hyperlink(self.paper_link, self.paper_name) if self.paper_link.startswith("http") else self.paper_name,
AutoEvalColumn.model_backbone_type.name: self.model_backbone_type.value,
AutoEvalColumn.model_backbone.name: self.model_backbone,
AutoEvalColumn.training_dataset_type.name: self.training_dataset_type.value,
AutoEvalColumn.training_dataset.name: self.training_dataset,
AutoEvalColumn.testing_type.name: self.testing_type.name,
AutoEvalColumn.model_link.name: self.model_link
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.metric]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision, training_dataset, testing_type):
"""Selects the correct request file for a given model if it's marked as FINISHED"""
request_filename = os.path.join(
requests_path,
model_name,
f"{model_name}_eval_request_{precision}_{training_dataset}_{testing_type}.json",
)
# check for request file
try:
with open(request_filename, "r") as file:
req_content = json.load(file)
if req_content["status"] not in ["FINISHED"]:
return None
except OSError:
return None
return request_filename
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
eval_name = eval_result.eval_name
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
|