from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "markdown", True, never_hidden=True)]) auto_eval_column_dict.append(["model_name", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]) auto_eval_column_dict.append(["paper", ColumnContent, ColumnContent("Paper", "markdown", False)]) auto_eval_column_dict.append(["training_dataset_type", ColumnContent, ColumnContent("Training Dataset Type", "markdown", False, hidden=True)]) auto_eval_column_dict.append(["training_dataset", ColumnContent, ColumnContent("Training Dataset", "markdown", True, never_hidden=True)]) #Scores for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information #auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "markdown", False)]) auto_eval_column_dict.append(["model_backbone_type", ColumnContent, ColumnContent("Model Backbone Type", "markdown", False, hidden=True)]) auto_eval_column_dict.append(["model_backbone", ColumnContent, ColumnContent("Model Backbone", "str", True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "markdown", False)]) auto_eval_column_dict.append(["model_parameters", ColumnContent, ColumnContent("Parameter Count", "markdown", False)]) auto_eval_column_dict.append(["model_link", ColumnContent, ColumnContent("Link To Model", "markdown", True)]) auto_eval_column_dict.append(["testing_type", ColumnContent, ColumnContent("Testing Type", "str", False, hidden=True)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "str", True) precision = ColumnContent("precision", "str", True) training_dataset = ColumnContent("training_dataset", "str", True) testing_type = ColumnContent("testing_type", "str", True) status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Other = ModelDetails(name="Other", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT return ModelType.Other class Precision(Enum): float32 = "float32" Other = "Other" def from_str(precision): if precision in ["torch.float32", "float32"]: return Precision.float32 return Precision.Other # Column selection COLS = [c.name for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]