from huggingface_hub import hf_hub_download from ultralytics import YOLO from supervision import Detections import cv2 import gradio as gr from PIL import Image import numpy as np model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt") model = YOLO(model_path) def detect_faces(image): output = model(image) results = Detections.from_ultralytics(output[0]) im = np.array(image) for i in results: im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (0,0,255), 2) image_np = np.array(image) gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5)) for (x, y, w, h) in faces: cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) return (image_np,im) interface = gr.Interface( fn=detect_faces, inputs="image", outputs=["image","image"], title="Face Detection Deep Learning", description="Upload an image, and the model will detect faces and draw bounding boxes around them.", ) interface.launch()