Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install transformers") | |
import transformers | |
from transformers.pipelines.token_classification import TokenClassificationPipeline | |
class MyPipeline(TokenClassificationPipeline): | |
def preprocess(self, sentence, offset_mapping=None): | |
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False | |
model_inputs = self.tokenizer( | |
sentence, | |
return_tensors=self.framework, | |
truncation=truncation, | |
return_special_tokens_mask=True, | |
return_offsets_mapping=self.tokenizer.is_fast, | |
) | |
length = len(model_inputs['input_ids'][0]) - 2 | |
tokens = tokenizer.tokenize(sentence) | |
seek = 0 | |
offset_mapping_list = [[(0, 0)]] | |
for i in range(length): | |
if tokens[i][-2:] == '@@': | |
offset_mapping_list[0].append((seek, seek + len(tokens[i]) - 2)) | |
seek += len(tokens[i]) - 2 | |
else: | |
offset_mapping_list[0].append((seek, seek + len(tokens[i]))) | |
seek += len(tokens[i]) + 1 | |
offset_mapping_list[0].append((0, 0)) | |
# if offset_mapping: | |
# model_inputs["offset_mapping"] = offset_mapping | |
model_inputs['offset_mapping'] = offset_mapping_list | |
model_inputs["sentence"] = sentence | |
return model_inputs | |
model_checkpoint = "DD0101/disfluency-base" | |
my_classifier = pipeline( | |
"token-classification", model=model_checkpoint, aggregation_strategy="simple", pipeline_class=MyPipeline) | |
import gradio as gr | |
def ner(text): | |
output = my_classifier(text) | |
for entity in output: | |
entity['entity'] = entity.pop('entity_group') | |
return {'text': text, 'entities': output} | |
examples = dataset['test'][:10]['text'] | |
demo = gr.Interface(ner, | |
gr.Textbox(label='Text', placeholder="Enter sentence here..."), | |
gr.HighlightedText(label='Highlighted Output'), | |
examples=examples, | |
title="Disfluency Detection", | |
description="This is an easy-to-use built in Gradio for desmontrating a NER System that identifies disfluency-entities in \ | |
Vietnamese utterances", | |
theme=gr.themes.Soft()) | |
demo.launch() | |