Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
|
3 |
+
from transformers.pipelines.token_classification import TokenClassificationPipeline
|
4 |
+
|
5 |
+
class MyPipeline(TokenClassificationPipeline):
|
6 |
+
def preprocess(self, sentence, offset_mapping=None):
|
7 |
+
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
|
8 |
+
model_inputs = self.tokenizer(
|
9 |
+
sentence,
|
10 |
+
return_tensors=self.framework,
|
11 |
+
truncation=truncation,
|
12 |
+
return_special_tokens_mask=True,
|
13 |
+
return_offsets_mapping=self.tokenizer.is_fast,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
length = len(model_inputs['input_ids'][0]) - 2
|
18 |
+
tokens = tokenizer.tokenize(sentence)
|
19 |
+
seek = 0
|
20 |
+
offset_mapping_list = [[(0, 0)]]
|
21 |
+
for i in range(length):
|
22 |
+
if tokens[i][-2:] == '@@':
|
23 |
+
offset_mapping_list[0].append((seek, seek + len(tokens[i]) - 2))
|
24 |
+
seek += len(tokens[i]) - 2
|
25 |
+
else:
|
26 |
+
offset_mapping_list[0].append((seek, seek + len(tokens[i])))
|
27 |
+
seek += len(tokens[i]) + 1
|
28 |
+
offset_mapping_list[0].append((0, 0))
|
29 |
+
|
30 |
+
# if offset_mapping:
|
31 |
+
# model_inputs["offset_mapping"] = offset_mapping
|
32 |
+
|
33 |
+
model_inputs['offset_mapping'] = offset_mapping_list
|
34 |
+
model_inputs["sentence"] = sentence
|
35 |
+
|
36 |
+
return model_inputs
|
37 |
+
|
38 |
+
model_checkpoint = "DD0101/disfluency-base"
|
39 |
+
|
40 |
+
my_classifier = pipeline(
|
41 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple", pipeline_class=MyPipeline)
|
42 |
+
|
43 |
+
|
44 |
+
import gradio as gr
|
45 |
+
|
46 |
+
def ner(text):
|
47 |
+
output = my_classifier(text)
|
48 |
+
for entity in output:
|
49 |
+
entity['entity'] = entity.pop('entity_group')
|
50 |
+
return {'text': text, 'entities': output}
|
51 |
+
|
52 |
+
examples = dataset['test'][:10]['text']
|
53 |
+
|
54 |
+
demo = gr.Interface(ner,
|
55 |
+
gr.Textbox(label='Text', placeholder="Enter sentence here..."),
|
56 |
+
gr.HighlightedText(label='Highlighted Output'),
|
57 |
+
examples=examples,
|
58 |
+
title="Disfluency Detection",
|
59 |
+
description="This is an easy-to-use built in Gradio for desmontrating a NER System that identifies disfluency-entities in \
|
60 |
+
Vietnamese utterances",
|
61 |
+
theme=gr.themes.Soft())
|
62 |
+
|
63 |
+
demo.launch()
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|