File size: 2,554 Bytes
c938124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os

import numpy as np
import torch


class EarlyStopping:
    """Early stops the training if validation loss doesn't improve after a given patience."""

    def __init__(self, patience=7, verbose=False):
        """
        Args:
            patience (int): How long to wait after last time validation loss improved.
                            Default: 7
            verbose (bool): If True, prints a message for each validation loss improvement.
                            Default: False
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.val_loss_min = np.Inf

    def __call__(self, val_loss, model, args):
        if args.tuning_metric == "loss":
            score = -val_loss
        else:
            score = val_loss
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model, args)
        elif score < self.best_score:
            self.counter += 1
            print(f"EarlyStopping counter: {self.counter} out of {self.patience}")
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model, args)
            self.counter = 0

    def save_checkpoint(self, val_loss, model, args):
        """Saves model when validation loss decreases or accuracy/f1 increases."""
        if self.verbose:
            if args.tuning_metric == "loss":
                print(f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...")
            else:
                print(
                    f"{args.tuning_metric} increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ..."
                )
        model.save_pretrained(args.model_dir)
        torch.save(args, os.path.join(args.model_dir, "training_args.bin"))
        self.val_loss_min = val_loss

        # # Save model checkpoint (Overwrite)
        # if not os.path.exists(self.args.model_dir):
        #     os.makedirs(self.args.model_dir)
        # model_to_save = self.model.module if hasattr(self.model, 'module') else self.model
        # model_to_save.save_pretrained(self.args.model_dir)

        # # Save training arguments together with the trained model
        # torch.save(self.args, os.path.join(self.args.model_dir, 'training_args.bin'))
        # logger.info("Saving model checkpoint to %s", self.args.model_dir)