File size: 6,144 Bytes
c938124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse

from data_loader import load_and_cache_examples
from trainer import Trainer
from utils import MODEL_CLASSES, MODEL_PATH_MAP, init_logger, load_tokenizer, set_seed


def main(args):
    init_logger()
    set_seed(args)
    tokenizer = load_tokenizer(args)

    train_dataset = load_and_cache_examples(args, tokenizer, mode="train")
    dev_dataset = load_and_cache_examples(args, tokenizer, mode="dev")
    test_dataset = load_and_cache_examples(args, tokenizer, mode="test")

    trainer = Trainer(args, train_dataset, dev_dataset, test_dataset)

    if args.do_train:
        trainer.train()

    if args.do_eval:
        trainer.load_model()
        trainer.evaluate("test")
    if args.do_eval_dev:
        trainer.load_model()
        trainer.evaluate("dev")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # parser.add_argument("--task", default=None, required=True, type=str, help="The name of the task to train")
    parser.add_argument("--model_dir", default=None, required=True, type=str, help="Path to save, load model")
    parser.add_argument("--data_dir", default="./PhoATIS", type=str, help="The input data dir")
    parser.add_argument("--intent_label_file", default="intent_label.txt", type=str, help="Intent Label file")
    parser.add_argument("--slot_label_file", default="slot_label.txt", type=str, help="Slot Label file")

    parser.add_argument(
        "--model_type",
        default="phobert",
        type=str,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument("--tuning_metric", default="loss", type=str, help="Metrics to tune when training")
    parser.add_argument("--seed", type=int, default=1, help="random seed for initialization")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
    parser.add_argument("--eval_batch_size", default=64, type=int, help="Batch size for evaluation.")
    parser.add_argument(
        "--max_seq_len", default=50, type=int, help="The maximum total input sequence length after tokenization."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--num_train_epochs", default=10.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument("--dropout_rate", default=0.1, type=float, help="Dropout for fully-connected layers")

    parser.add_argument("--logging_steps", type=int, default=200, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=200, help="Save checkpoint every X updates steps.")

    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
    parser.add_argument("--do_eval_dev", action="store_true", help="Whether to run eval on the dev set.")

    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")

    parser.add_argument(
        "--ignore_index",
        default=0,
        type=int,
        help="Specifies a target value that is ignored and does not contribute to the input gradient",
    )

    parser.add_argument("--intent_loss_coef", type=float, default=0.5, help="Coefficient for the intent loss.")
    parser.add_argument(
        "--token_level",
        type=str,
        default="word-level",
        help="Tokens are at syllable level or word level (Vietnamese) [word-level, syllable-level]",
    )
    parser.add_argument(
        "--early_stopping",
        type=int,
        default=50,
        help="Number of unincreased validation step to wait for early stopping",
    )
    parser.add_argument("--gpu_id", type=int, default=0, help="Select gpu id")
    # CRF option
    parser.add_argument("--use_crf", action="store_true", help="Whether to use CRF")
    # init pretrained
    parser.add_argument("--pretrained", action="store_true", help="Whether to init model from pretrained base model")
    parser.add_argument("--pretrained_path", default="./viatis_xlmr_crf", type=str, help="The pretrained model path")

    # Slot-intent interaction
    parser.add_argument(
        "--use_intent_context_concat",
        action="store_true",
        help="Whether to feed context information of intent into slots vectors (simple concatenation)",
    )
    parser.add_argument(
        "--use_intent_context_attention",
        action="store_true",
        help="Whether to feed context information of intent into slots vectors (dot product attention)",
    )
    parser.add_argument(
        "--attention_embedding_size", type=int, default=200, help="hidden size of attention output vector"
    )

    parser.add_argument(
        "--slot_pad_label",
        default="PAD",
        type=str,
        help="Pad token for slot label pad (to be ignore when calculate loss)",
    )
    parser.add_argument(
        "--embedding_type", default="soft", type=str, help="Embedding type for intent vector (hard/soft)"
    )
    parser.add_argument("--use_attention_mask", action="store_true", help="Whether to use attention mask")

    args = parser.parse_args()

    args.model_name_or_path = MODEL_PATH_MAP[args.model_type]
    main(args)