File size: 3,366 Bytes
c938124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import logging
import os
import random

import numpy as np
import torch
from model import JointPhoBERT, JointXLMR
from seqeval.metrics import f1_score, precision_score, recall_score
from transformers import (
    AutoTokenizer,
    RobertaConfig,
    XLMRobertaConfig,
    XLMRobertaTokenizer,
)


MODEL_CLASSES = {
    "xlmr": (XLMRobertaConfig, JointXLMR, XLMRobertaTokenizer),
    "phobert": (RobertaConfig, JointPhoBERT, AutoTokenizer),
}

MODEL_PATH_MAP = {
    "xlmr": "xlm-roberta-base",
    "phobert": "vinai/phobert-base",
}


def get_intent_labels(args):
    return [
        label.strip()
        for label in open(os.path.join(args.data_dir, args.token_level, args.intent_label_file), "r", encoding="utf-8")
    ]


def get_slot_labels(args):
    return [
        label.strip()
        for label in open(os.path.join(args.data_dir, args.token_level, args.slot_label_file), "r", encoding="utf-8")
    ]


def load_tokenizer(args):
    return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)


def init_logger():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if not args.no_cuda and torch.cuda.is_available():
        torch.cuda.manual_seed_all(args.seed)


def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels):
    assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels)
    results = {}
    intent_result = get_intent_acc(intent_preds, intent_labels)
    slot_result = get_slot_metrics(slot_preds, slot_labels)
    sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels)

    mean_intent_slot = (intent_result["intent_acc"] + slot_result["slot_f1"]) / 2

    results.update(intent_result)
    results.update(slot_result)
    results.update(sementic_result)
    results["mean_intent_slot"] = mean_intent_slot

    return results


def get_slot_metrics(preds, labels):
    assert len(preds) == len(labels)
    return {
        "slot_precision": precision_score(labels, preds),
        "slot_recall": recall_score(labels, preds),
        "slot_f1": f1_score(labels, preds),
    }


def get_intent_acc(preds, labels):
    acc = (preds == labels).mean()
    return {"intent_acc": acc}


def read_prediction_text(args):
    return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), "r", encoding="utf-8")]


def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels):
    """For the cases that intent and all the slots are correct (in one sentence)"""
    # Get the intent comparison result
    intent_result = intent_preds == intent_labels

    # Get the slot comparision result
    slot_result = []
    for preds, labels in zip(slot_preds, slot_labels):
        assert len(preds) == len(labels)
        one_sent_result = True
        for p, l in zip(preds, labels):
            if p != l:
                one_sent_result = False
                break
        slot_result.append(one_sent_result)
    slot_result = np.array(slot_result)

    semantic_acc = np.multiply(intent_result, slot_result).mean()
    return {"semantic_frame_acc": semantic_acc}