IDSF-JointBERT_CRF / predict.py
DD0101's picture
first commit
c938124
raw
history blame
8.64 kB
import argparse
import logging
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from tqdm import tqdm
from utils import MODEL_CLASSES, get_intent_labels, get_slot_labels, init_logger, load_tokenizer
logger = logging.getLogger(__name__)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
args = torch.load(os.path.join(pred_config.model_dir, "training_args.bin"))
args.model_dir = 'JointBERT-CRF_PhoBERTencoder'
args.data_dir = 'PhoATIS'
return args
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
model = MODEL_CLASSES[args.model_type][1].from_pretrained(
args.model_dir, args=args, intent_label_lst=get_intent_labels(args), slot_label_lst=get_slot_labels(args)
)
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except Exception:
raise Exception("Some model files might be missing...")
return model
def read_input_file(pred_config):
lines = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
words = line.split()
lines.append(words)
return lines
def convert_input_file_to_tensor_dataset(
lines,
pred_config,
args,
tokenizer,
pad_token_label_id,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
all_slot_label_mask = []
for words in lines:
tokens = []
slot_label_mask = []
for word in words:
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
slot_label_mask.extend([pad_token_label_id + 1] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[: (args.max_seq_len - special_tokens_count)]
slot_label_mask = slot_label_mask[: (args.max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
slot_label_mask += [pad_token_label_id]
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
slot_label_mask = [pad_token_label_id] + slot_label_mask
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
slot_label_mask = slot_label_mask + ([pad_token_label_id] * padding_length)
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
all_slot_label_mask.append(slot_label_mask)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
all_slot_label_mask = torch.tensor(all_slot_label_mask, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_slot_label_mask)
return dataset
def predict(pred_config):
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
logger.info(args)
intent_label_lst = get_intent_labels(args)
slot_label_lst = get_slot_labels(args)
# Convert input file to TensorDataset
pad_token_label_id = args.ignore_index
tokenizer = load_tokenizer(args)
lines = read_input_file(pred_config)
dataset = convert_input_file_to_tensor_dataset(lines, pred_config, args, tokenizer, pad_token_label_id)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)
all_slot_label_mask = None
intent_preds = None
slot_preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"intent_label_ids": None,
"slot_labels_ids": None,
}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
_, (intent_logits, slot_logits) = outputs[:2]
# Intent Prediction
if intent_preds is None:
intent_preds = intent_logits.detach().cpu().numpy()
else:
intent_preds = np.append(intent_preds, intent_logits.detach().cpu().numpy(), axis=0)
# Slot prediction
if slot_preds is None:
if args.use_crf:
# decode() in `torchcrf` returns list with best index directly
slot_preds = np.array(model.crf.decode(slot_logits))
else:
slot_preds = slot_logits.detach().cpu().numpy()
all_slot_label_mask = batch[3].detach().cpu().numpy()
else:
if args.use_crf:
slot_preds = np.append(slot_preds, np.array(model.crf.decode(slot_logits)), axis=0)
else:
slot_preds = np.append(slot_preds, slot_logits.detach().cpu().numpy(), axis=0)
all_slot_label_mask = np.append(all_slot_label_mask, batch[3].detach().cpu().numpy(), axis=0)
intent_preds = np.argmax(intent_preds, axis=1)
if not args.use_crf:
slot_preds = np.argmax(slot_preds, axis=2)
slot_label_map = {i: label for i, label in enumerate(slot_label_lst)}
slot_preds_list = [[] for _ in range(slot_preds.shape[0])]
for i in range(slot_preds.shape[0]):
for j in range(slot_preds.shape[1]):
if all_slot_label_mask[i, j] != pad_token_label_id:
slot_preds_list[i].append(slot_label_map[slot_preds[i][j]])
# Write to output file
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for words, slot_preds, intent_pred in zip(lines, slot_preds_list, intent_preds):
line = ""
for word, pred in zip(words, slot_preds):
if pred == "O":
line = line + word + " "
else:
line = line + "[{}:{}] ".format(word, pred)
f.write("<{}> -> {}\n".format(intent_label_lst[intent_pred], line.strip()))
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", default="sample_pred_in.txt", type=str, help="Input file for prediction")
parser.add_argument("--output_file", default="sample_pred_out.txt", type=str, help="Output file for prediction")
parser.add_argument("--model_dir", default="./atis_model", type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_config = parser.parse_args()
predict(pred_config)