import os import numpy as np import torch class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf def __call__(self, val_loss, model, args): if args.tuning_metric == "loss": score = -val_loss else: score = val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, args) elif score < self.best_score: self.counter += 1 print(f"EarlyStopping counter: {self.counter} out of {self.patience}") if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model, args) self.counter = 0 def save_checkpoint(self, val_loss, model, args): """Saves model when validation loss decreases or accuracy/f1 increases.""" if self.verbose: if args.tuning_metric == "loss": print(f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...") else: print( f"{args.tuning_metric} increased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ..." ) model.save_pretrained(args.model_dir) torch.save(args, os.path.join(args.model_dir, "training_args.bin")) self.val_loss_min = val_loss # # Save model checkpoint (Overwrite) # if not os.path.exists(self.args.model_dir): # os.makedirs(self.args.model_dir) # model_to_save = self.model.module if hasattr(self.model, 'module') else self.model # model_to_save.save_pretrained(self.args.model_dir) # # Save training arguments together with the trained model # torch.save(self.args, os.path.join(self.args.model_dir, 'training_args.bin')) # logger.info("Saving model checkpoint to %s", self.args.model_dir)