# Datetime import datetime # Manipulate import re import json import pandas as pd # App import gradio as gr # GLiNER Model from gliner import GLiNER # Transformers from transformers import pipeline # Load GLiNER Model model = GLiNER.from_pretrained("chris32/gliner_multi_pii_real_state-v2") model.eval() # BERT Model model_name = "chris32/distilbert-base-spanish-uncased-finetuned-text-intelligence" pipe = pipeline(model = model_name, device = "cpu") # Global Variables: For Post Cleaning Inferences YEAR_OF_REMODELING_LIMIT = 100 CURRENT_YEAR = int(datetime.date.today().year) SCORE_LIMIT_SIMILARITY_NAMES = 70 def clean_text(text): # Replace HTML line breaks with the specified character replacement_char = " # " text = re.sub(r'', replacement_char, text) # Remove HTML tags and special characters cleaned_text = re.sub(r'<[^>]*>', '', text) cleaned_text = re.sub(r' ', ' ', cleaned_text) cleaned_text = re.sub(r'&', '&', cleaned_text) # Drop punctuation marks #regex = '[\\!\\"\\#\\$\\%\\&\\\'\\(\\)\\*\\+\\,\\-\\.\\/\\:\\;\\<\\=\\>\\?\\@\\[\\\\\\]\\^_\\`\\{\\|\\}\\~]' #cleaned_text = re.sub(regex , ' ', cleaned_text) # Replace multiple spaces with a single one cleaned_text = re.sub(r'\s+', ' ', cleaned_text) # Remove leading and trailing spaces cleaned_text = cleaned_text.strip() # Replace Duplicated "." and "," cleaned_text = cleaned_text.replace("..", ".").replace(",,", ",") return cleaned_text def format_gliner_predictions(prediction): if len(prediction) > 0: # Select the Entity value with the Greater Score for each Entity Name prediction_df = pd.DataFrame(prediction)\ .sort_values("score", ascending = False)\ .drop_duplicates(subset = "label", keep = "first") # Add Position Column prediction_df["position"] = prediction_df.apply(lambda x: (x["start"], x["end"]) ,axis = 1) # Add Columns Label for Text and Probability prediction_df["label_text"] = prediction_df["label"].apply(lambda x: f"pred_{x}") prediction_df["label_prob"] = prediction_df["label"].apply(lambda x: f"prob_{x}") prediction_df["label_position"] = prediction_df["label"].apply(lambda x: f"pos_{x}") # Format Predictions entities = prediction_df.set_index("label_text")["text"].to_dict() entities_probs = prediction_df.set_index("label_prob")["score"].to_dict() entities_positions = prediction_df.set_index("label_position")["position"].to_dict() predictions_formatted = {**entities, **entities_probs, **entities_positions} return predictions_formatted else: return dict() def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict): # Prediction and Probability prediction = row[f"pred_{feature_name}"] prob = row[f"prob_{feature_name}"] # Clean and Return Prediction only if the Threshold is lower. if prob > threshols_dict[feature_name]: clean_function = clean_functions_dict[feature_name] prediction_clean = clean_function(prediction) return prediction_clean else: return None surfaces_words_to_omit = ["ha", "hect", "lts", "litros", "mil"] tower_name_key_words_to_keep = ["torr", "towe"] def has_number(string): return bool(re.search(r'\d', string)) def contains_multiplication(string): # Regular expression pattern to match a multiplication operation pattern = r'\b([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*[xX]\s*([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*\b' # Search for the pattern in the string match = re.search(pattern, string) # If a match is found, return True, otherwise False if match: return True else: return False def extract_first_number_from_string(text): if isinstance(text, str): match = re.search(r'\b\d*\.?\d+\b|\d*\.?\d+', text) if match: start_pos = match.start() end_pos = match.end() number = int(float(match.group())) return number, start_pos, end_pos else: return None, None, None else: return None, None, None def get_character(string, index): if len(string) > index: return string[index] else: return None def find_valid_comma_separated_number(string): # This regular expression matches strings starting with 1 to 3 digits followed by a comma and 3 digits. It ensures no other digits or commas follow or the string ends. match = re.match(r'^(\d{1,3},\d{3})(?:[^0-9,]|$)', string) if match: valid_number = int(match.group(1).replace(",", "")) return valid_number else: return None def extract_surface_from_string(string: str) -> int: if isinstance(string, str): # 1. Validate if it Contains a Number if not(has_number(string)): return None # 2. Validate if it No Contains Multiplication if contains_multiplication(string): return None # 3. Validate if it No Contains Words to Omit if any([word in string.lower() for word in surfaces_words_to_omit]): return None # 4. Extract First Number number, start_pos, end_pos = extract_first_number_from_string(string) # 5. Extract Valid Comma Separated Number if isinstance(number, int): if get_character(string, end_pos) == ",": valid_comma_separated_number = find_valid_comma_separated_number(string[start_pos: -1]) return valid_comma_separated_number else: return number else: return None else: return None def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict): # Prediction and Probability prediction = row[f"pred_{feature_name}"] prob = row[f"prob_{feature_name}"] # Clean and Return Prediction only if the Threshold is lower. if prob > threshols_dict[feature_name]: clean_function = clean_functions_dict[feature_name] prediction_clean = clean_function(prediction) return prediction_clean else: return None def extract_remodeling_year_from_string(string): if isinstance(string, str): # 1. Detect 4-digit year match = re.search(r'\b\d{4}\b', string) if match: year_predicted = int(match.group()) else: # 2. Detect quantity of years followed by "year", "years", "anio", "año", or "an" match = re.search(r'(\d+) (year|years|anio|año|an|añ)', string.lower(), re.IGNORECASE) if match: past_years_predicted = int(match.group(1)) year_predicted = CURRENT_YEAR - past_years_predicted else: return None # 3. Detect if it is a valid year is_valid_year = (year_predicted <= CURRENT_YEAR) and (YEAR_OF_REMODELING_LIMIT > CURRENT_YEAR - year_predicted) return year_predicted if is_valid_year else None return None def extract_valid_string_left_dotted(string, text, pos): if isinstance(string, str): # String Position left_pos, rigth_pos = pos # Verify if the Left Position is not too close to the beginning of the text. if left_pos < 5: return None if string[0].isdigit(): # 1. Take a subtext with 5 more characters to the left of the string. sub_text = text[left_pos - 5: rigth_pos] # 2. If the string has no dots to the left, return the original string. if text[left_pos - 1] == ".": # 3. If the string has a left dot but no preceding digit, return the original string. if text[left_pos - 2].isdigit(): # 4. If the string has a left dot, with 3 left digits, and the fourth left value isn't ',', '.', or "''", it returns the new string. pattern = r'^(?![\d.,])\D*\d{1,3}\.' + re.escape(string) match = re.search(pattern, sub_text) if match: return match.group(0) else: return None else: return string else: return string else: return string else: return None # Cleaning clean_functions_dict = { "SUPERFICIE_TERRAZA": extract_surface_from_string, "SUPERFICIE_JARDIN": extract_surface_from_string, "SUPERFICIE_TERRENO": extract_surface_from_string, "SUPERFICIE_HABITABLE": extract_surface_from_string, "SUPERFICIE_BALCON": extract_surface_from_string, "AÑO_REMODELACIÓN": extract_remodeling_year_from_string, "NOMBRE_COMPLETO_ARQUITECTO": lambda x: x, 'NOMBRE_CLUB_GOLF': lambda x: x, 'NOMBRE_TORRE': lambda x: x, 'NOMBRE_CONDOMINIO': lambda x: x, 'NOMBRE_DESARROLLO': lambda x: x, } threshols_dict = { "SUPERFICIE_TERRAZA": 0.9, "SUPERFICIE_JARDIN": 0.9, "SUPERFICIE_TERRENO": 0.9, "SUPERFICIE_HABITABLE": 0.9, "SUPERFICIE_BALCON": 0.9, "AÑO_REMODELACIÓN": 0.9, "NOMBRE_COMPLETO_ARQUITECTO": 0.9, 'NOMBRE_CLUB_GOLF': 0.9, 'NOMBRE_TORRE': 0.9, 'NOMBRE_CONDOMINIO': 0.9, 'NOMBRE_DESARROLLO': 0.9, } threshols_dict = { "SUPERFICIE_BALCON": 0.7697697697697697, "SUPERFICIE_TERRAZA": 0.953953953953954, "SUPERFICIE_JARDIN": 0.9519519519519519, #idk "SUPERFICIE_TERRENO": 0.980980980980981 - 0.05, "SUPERFICIE_HABITABLE": 0.978978978978979 - 0.02, #idk if not "SUPERFICIE_HABITABLE": 0.988988988988989, "AÑO_REMODELACIÓN": 0.996996996996997 - 0.01, "NOMBRE_COMPLETO_ARQUITECTO": 0.8878878878878879, "NOMBRE_CLUB_GOLF": 0.8708708708708709, #idk if not "NOMBRE_CLUB_GOLF": 0.9729729729729729, "NOMBRE_TORRE": 0.8458458458458459 - 0.04, "NOMBRE_CONDOMINIO": 0.965965965965966, "NOMBRE_DESARROLLO": 0.9229229229229229 } label_names_dict = { 'LABEL_0': None, 'LABEL_1': 1, 'LABEL_2': 2, 'LABEL_3': 3, } BERT_SCORE_LIMIT = 0.980819808198082 def extract_max_label_score(probabilities): # Find the dictionary with the maximum score max_item = max(probabilities, key=lambda x: x['score']) # Extract the label and the score label = max_item['label'] score = max_item['score'] return label, score def clean_prediction_bert(label, score): if score > BERT_SCORE_LIMIT: label_formatted = label_names_dict.get(label, None) return label_formatted else: return None # BERT Inference Config pipe_config = { "batch_size": 8, "truncation": True, "max_length": 250, "add_special_tokens": True, "return_all_scores": True, "padding": True, } def generate_answer(text): labels = [ 'SUPERFICIE_JARDIN', 'NOMBRE_CLUB_GOLF', 'SUPERFICIE_TERRENO', 'SUPERFICIE_HABITABLE', 'SUPERFICIE_TERRAZA', 'NOMBRE_COMPLETO_ARQUITECTO', 'SUPERFICIE_BALCON', 'NOMBRE_DESARROLLO', 'NOMBRE_TORRE', 'NOMBRE_CONDOMINIO', 'AÑO_REMODELACIÓN' ] # Clean Text text = clean_text(text) # Inference entities = model.predict_entities(text, labels, threshold=0.4) # Format Prediction Entities entities_formatted = format_gliner_predictions(entities) # Extract valid string left dotted feature_surfaces = ['SUPERFICIE_BALCON', 'SUPERFICIE_TERRAZA', 'SUPERFICIE_JARDIN', 'SUPERFICIE_TERRENO', 'SUPERFICIE_HABITABLE'] for feature_name in feature_surfaces: if entities_formatted.get(f"pred_{feature_name}", None) != None: entities_formatted[f"pred_{feature_name}"] = extract_valid_string_left_dotted(entities_formatted[f"pred_{feature_name}"], text, entities_formatted[f"pos_{feature_name}"]) # Clean Entities entities_names = list({c.replace("pred_", "").replace("prob_", "").replace("pos_", "") for c in list(entities_formatted.keys())}) entities_cleaned = dict() for feature_name in entities_names: entity_prediction_cleaned = clean_prediction(entities_formatted, feature_name, threshols_dict, clean_functions_dict) if isinstance(entity_prediction_cleaned, str) or isinstance(entity_prediction_cleaned, int): entities_cleaned[feature_name] = entity_prediction_cleaned # BERT Inference predictions = pipe([text], **pipe_config) # Format Prediction label, score = extract_max_label_score(predictions[0]) entities_formatted["NIVELES_CASA"] = label entities_formatted["prob_NIVELES_CASA"] = score prediction_cleaned = clean_prediction_bert(label, score) if isinstance(prediction_cleaned, int): entities_cleaned["NIVELES_CASA"] = prediction_cleaned result_json = json.dumps(entities_cleaned, indent = 4, ensure_ascii = False) return "Clean Result:" + result_json + "\n \n" + "Raw Result:" + json.dumps(entities_formatted, indent = 4, ensure_ascii = False) # Cambiar a entrada de texto #text_input = gr.inputs.Textbox(lines=15, label="Input Text") iface = gr.Interface( fn=generate_answer, inputs="text", outputs="text", title="txt.er", description="Input text describing the property." ) iface.launch()