Spaces:
Sleeping
Sleeping
File size: 5,574 Bytes
7e9eac8 d853661 b6e1649 7e9eac8 b6e1649 7e9eac8 b6e1649 7e9eac8 ebb01fc 7e9eac8 ebb01fc 7e9eac8 ebb01fc 7e9eac8 ebb01fc 7e9eac8 ebb01fc 7e9eac8 dd6a80b 6a19fc4 dd6a80b 50e49e1 dd6a80b 7e9eac8 dd6a80b 7e9eac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
#!/usr/bin/env python3
#
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
import time
import uuid
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
title = "# Next-gen Kaldi: Text-to-speech (TTS)"
description = """
This space shows how to convert text to speech with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process(language: str, repo_id: str, text: str, sid: str, speed: float):
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
end = time.time()
if len(audio.samples) == 0:
raise ValueError(
"Error in generating audios. Please read previous error messages."
)
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = end - start
rtf = elapsed_seconds / duration
info = f"""
Wave duration : {duration:.3f} s <br/>
Processing time: {elapsed_seconds:.3f} s <br/>
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
"""
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
filename = str(uuid.uuid4())
filename = f"{filename}.wav"
sf.write(
filename,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
)
return filename, build_html_output(info)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Please input your text"):
input_text = gr.Textbox(
label="Input text",
info="Your text",
lines=3,
placeholder="Please input your text here",
)
input_sid = gr.Textbox(
label="Speaker ID",
info="Speaker ID",
lines=1,
max_lines=1,
value="0",
placeholder="Speaker ID. Valid only for mult-speaker model",
)
input_speed = gr.Slider(
minimum=0.1,
maximum=10,
value=1,
step=0.1,
label="Speed (larger->faster; smaller->slower)",
)
input_button = gr.Button("Submit")
output_audio = gr.Audio(label="Output")
output_info = gr.HTML(label="Info")
input_button.click(
process,
inputs=[
language_radio,
model_dropdown,
input_text,
input_sid,
input_speed,
],
outputs=[
output_audio,
output_info,
],
)
gr.Markdown(description)
def download_espeak_ng_data():
os.system(
"""
cd /tmp
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
"""
)
if __name__ == "__main__":
download_espeak_ng_data()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|