text-to-speech / app.py
DHEIVER's picture
Update app.py
9e20056 verified
raw
history blame
6.88 kB
import logging
import os
import time
import uuid
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
title = "# Conversão de texto para fala (TTS)"
description = """
**Projeto Open Source de Text-to-Speech para Produção de Conteúdo com Inteligência Artificial: Voz Inteligente para Criadores de Cursos e Podcasters**
---
**Visão Geral do Projeto:**
O projeto Text-to-Speech (TTS) de código aberto visa capacitar criadores de cursos online e podcasters a produzirem conteúdo de alta qualidade através da aplicação de tecnologias avançadas de inteligência artificial. Ao oferecer uma solução robusta e flexível, o projeto busca democratizar o acesso a vozes naturais e envolventes, eliminando barreiras linguísticas e proporcionando uma experiência de aprendizado ou entretenimento mais inclusiva.
---
**Principais Recursos:**
1. **Voz Natural e Expressiva:** Utiliza modelos de síntese de voz avançados para gerar vozes que soam naturais, expressivas e adaptáveis ao contexto do conteúdo.
2. **Suporte Multilíngue:** Incorpora diversos idiomas para atender a uma audiência global, permitindo aos criadores atingir uma ampla variedade de públicos.
3. **Personalização de Voz:** Oferece ferramentas para ajustar a entonação, velocidade e estilo da voz, permitindo que os criadores personalizem a experiência auditiva de acordo com suas preferências e o tom do conteúdo.
4. **Integração de Acentos e Dialeto:** Inclui suporte para diferentes acentos e dialetos, enriquecendo a autenticidade da experiência de audição.
5. **Controle de Emoções:** Permite a inserção de nuances emocionais na voz, tornando possível transmitir entusiasmo, empatia ou seriedade conforme necessário.
6. **API Amigável:** Disponibiliza uma API intuitiva para facilitar a integração com plataformas de criação de conteúdo, ambientes de aprendizado online e ferramentas de produção de podcasts.
7. **Modelo de Treinamento Aberto:** Encoraja a contribuição da comunidade para a melhoria contínua do modelo, permitindo que a inteligência artificial se aprimore com o tempo e a diversidade de dados.
---
**Objetivos do Projeto:**
1. **Acessibilidade Global:** Tornar a produção de conteúdo acessível a todos, independentemente do idioma ou localização geográfica.
2. **Facilitar a Criação de Cursos Online:** Capacitar educadores a criar cursos envolventes e interativos, melhorando a experiência de aprendizado dos alunos.
3. **Aprimorar Produções de Podcast:** Permitir que podcasters forneçam narrativas cativantes e experiências auditivas excepcionais aos ouvintes.
4. **Desenvolvimento Sustentável:** Fomentar uma comunidade aberta e colaborativa para garantir a evolução contínua do projeto.
---
**Como Contribuir:**
O projeto Text-to-Speech é totalmente aberto à contribuição da comunidade. Se você é um desenvolvedor, designer, linguista ou entusiasta da inteligência artificial, sua participação é bem-vinda. Contribua com códigos, sugestões de recursos, correções de bugs ou simplesmente compartilhe suas experiências para enriquecer a diversidade de perspectivas.
Junte-se a nós na missão de tornar a produção de conteúdo mais acessível, envolvente e impactante com a magia da inteligência artificial aplicada à síntese de voz!
"""
css = """.result {display:flex;flex-direction:column}.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}.result_item_error {background-color:#ff7070;color:white;align-self:start}"""
examples = [["Portuguese", "csukuangfj/vits-mms-por", "Computação é arte.", 0, 1.0]]
language_choices = ["Portuguese"]
def update_model_dropdown(language):
return gr.Dropdown(choices=language_to_models.get(language, []), value=language_to_models.get(language, [""])[0], interactive=True)
def build_html_output(s, style="result_item_success"):
return f"""<div class='result'><div class='result_item {style}'>{s}</div></div>"""
def process(language, repo_id, text, sid, speed):
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
end = time.time()
if len(audio.samples) == 0:
raise ValueError("Error in generating audios. Please read previous error messages.")
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = end - start
rtf = elapsed_seconds / duration
info = f"""Wave duration : {duration:.3f} s <br/>Processing time: {elapsed_seconds:.3f} s <br/>RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>"""
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
filename = str(uuid.uuid4()) + ".wav"
sf.write(filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16")
return filename, build_html_output(info)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_radio = gr.Radio(label="Language", choices=language_choices, value=language_choices[0])
model_dropdown = gr.Dropdown(choices=language_to_models["Portuguese"], label="Select a model", value=language_to_models["Portuguese"][0])
language_radio.change(update_model_dropdown, inputs=language_radio, outputs=model_dropdown)
with gr.Tabs():
with gr.TabItem("Please input your text"):
input_text = gr.Textbox(label="Input text", info="Your text", lines=3, placeholder="Please input your text here")
input_sid = gr.Textbox(label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model")
input_speed = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)")
input_button = gr.Button("Submit")
output_audio = gr.Audio(label="Output")
output_info = gr.HTML(label="Info")
gr.Examples(examples=examples, fn=process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])
input_button.click(process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])
gr.Markdown(description)
def download_espeak_ng_data():
os.system("""cd /tmp; wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2; tar xf espeak-ng-data.tar.bz2""")
if __name__ == "__main__":
download_espeak_ng_data()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()