Spaces:
Build error
Build error
File size: 1,297 Bytes
4649eb9 2decfdd 4649eb9 26b99f4 4649eb9 2decfdd 4649eb9 f674c7b 4649eb9 034d725 4649eb9 f674c7b 4649eb9 034d725 4649eb9 34c39e0 4649eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import logging
from speechbrain.pretrained import Tacotron2, HIFIGAN
import torch
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
# Load TTS model and vocoder
logger.info("Loading Tacotron2 model for TTS...")
tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts")
logger.info("Tacotron2 model loaded successfully!")
logger.info("Loading HIFIGAN vocoder...")
vocoder = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
logger.info("HIFIGAN vocoder loaded successfully!")
# Define the text to synthesize
text = "Hello, I am an AI voice assistant. How can I help you today?"
# Run TTS and Vocoder to generate the audio
mel_output, mel_length, alignment = tts_model.encode_text(text)
waveforms, _ = vocoder.decode_batch(mel_output)
# Save the generated waveform as an audio file
audio_output_path = "output_audio.wav"
logger.info(f"Saving audio to {audio_output_path}...")
torch.save(waveforms.squeeze(1), audio_output_path)
logger.info(f"Audio saved successfully to {audio_output_path}!")
except Exception as e:
logger.error(f"Error during the TTS process: {str(e)}")
|