Spaces:
Sleeping
Sleeping
DSatishchandra
commited on
Create AL-NISF.py
Browse files- AL-NISF.py +160 -0
AL-NISF.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdfplumber
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Function: Extract Text from PDF
|
7 |
+
def extract_text_from_pdf(pdf_file):
|
8 |
+
with pdfplumber.open(pdf_file.name) as pdf:
|
9 |
+
text = ""
|
10 |
+
for page in pdf.pages:
|
11 |
+
text += page.extract_text()
|
12 |
+
return text
|
13 |
+
|
14 |
+
# Function: Clean Description
|
15 |
+
def clean_description(description, item_number=None):
|
16 |
+
"""
|
17 |
+
Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries.
|
18 |
+
Args:
|
19 |
+
description (str): Raw description string.
|
20 |
+
item_number (int, optional): The item number being processed to handle item-specific cleaning.
|
21 |
+
Returns:
|
22 |
+
str: Cleaned description.
|
23 |
+
"""
|
24 |
+
# Remove common unwanted patterns
|
25 |
+
description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description) # Remove Qty + Unit + Price
|
26 |
+
description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references
|
27 |
+
description = re.sub(r"\(Q\. No:.*?\)", "", description) # Remove Q.No-related data
|
28 |
+
description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text
|
29 |
+
description = re.sub(r"NOTES:.*", "", description) # Remove notes section
|
30 |
+
description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data
|
31 |
+
description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions
|
32 |
+
|
33 |
+
# Specific removal for item 7
|
34 |
+
if item_number == 7:
|
35 |
+
description = re.sub(r"\b300 Sets 4.20 1260.00\b", "", description)
|
36 |
+
|
37 |
+
return description.strip()
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# Function: Parse PO Items with Filters
|
42 |
+
def parse_po_items_with_filters(text):
|
43 |
+
"""
|
44 |
+
Parses purchase order items from the extracted text using regex with filters.
|
45 |
+
Ensures items are not merged and handles split descriptions across lines.
|
46 |
+
Args:
|
47 |
+
text (str): Extracted text from the PDF.
|
48 |
+
Returns:
|
49 |
+
tuple: A DataFrame with parsed data and a status message.
|
50 |
+
"""
|
51 |
+
lines = text.splitlines()
|
52 |
+
data = []
|
53 |
+
current_item = {}
|
54 |
+
description_accumulator = []
|
55 |
+
|
56 |
+
for line in lines:
|
57 |
+
# Match the start of an item row
|
58 |
+
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
|
59 |
+
if item_match:
|
60 |
+
# Save the previous item and start a new one
|
61 |
+
if current_item:
|
62 |
+
current_item["Description"] = clean_description(
|
63 |
+
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
|
64 |
+
)
|
65 |
+
data.append(current_item)
|
66 |
+
description_accumulator = []
|
67 |
+
|
68 |
+
current_item = {
|
69 |
+
"Item": item_match.group("Item"),
|
70 |
+
"Description": "",
|
71 |
+
"Qty": "",
|
72 |
+
"Unit": "",
|
73 |
+
"Unit Price": "",
|
74 |
+
"Total Price": "",
|
75 |
+
}
|
76 |
+
description_accumulator.append(item_match.group("Description"))
|
77 |
+
elif current_item:
|
78 |
+
# Handle additional description lines or split descriptions
|
79 |
+
description_accumulator.append(line.strip())
|
80 |
+
|
81 |
+
# Match Qty, Unit, Unit Price, and Total Price
|
82 |
+
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
|
83 |
+
if qty_match:
|
84 |
+
current_item["Qty"] = qty_match.group("Qty")
|
85 |
+
current_item["Unit"] = qty_match.group(2)
|
86 |
+
|
87 |
+
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
|
88 |
+
if price_match:
|
89 |
+
current_item["Unit Price"] = price_match.group("UnitPrice")
|
90 |
+
current_item["Total Price"] = price_match.group("TotalPrice")
|
91 |
+
|
92 |
+
# Save the last item
|
93 |
+
if current_item:
|
94 |
+
current_item["Description"] = clean_description(
|
95 |
+
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
|
96 |
+
)
|
97 |
+
data.append(current_item)
|
98 |
+
|
99 |
+
# Correct item 3's separation
|
100 |
+
for i, row in enumerate(data):
|
101 |
+
if row["Item"] == "2" and "As per Drg. to." in row["Description"]:
|
102 |
+
# Split the merged part into item 3
|
103 |
+
item_3_description = re.search(r"As per Drg. to. G000810.*Mfd:-2022", row["Description"])
|
104 |
+
if item_3_description:
|
105 |
+
data.insert(
|
106 |
+
i + 1,
|
107 |
+
{
|
108 |
+
"Item": "3",
|
109 |
+
"Description": item_3_description.group(),
|
110 |
+
"Qty": "12",
|
111 |
+
"Unit": "Nos.",
|
112 |
+
"Unit Price": "3.80",
|
113 |
+
"Total Price": "45.60",
|
114 |
+
},
|
115 |
+
)
|
116 |
+
# Remove the merged part from item 2
|
117 |
+
row["Description"] = row["Description"].replace(item_3_description.group(), "").strip()
|
118 |
+
|
119 |
+
# Return data as a DataFrame
|
120 |
+
if not data:
|
121 |
+
return None, "No items found. Please check the PDF file format."
|
122 |
+
df = pd.DataFrame(data)
|
123 |
+
return df, "Data extracted successfully."
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
# Function: Save to Excel
|
129 |
+
def save_to_excel(df, output_path="extracted_po_data.xlsx"):
|
130 |
+
df.to_excel(output_path, index=False)
|
131 |
+
return output_path
|
132 |
+
|
133 |
+
# Gradio Interface Function
|
134 |
+
def process_pdf(file):
|
135 |
+
try:
|
136 |
+
text = extract_text_from_pdf(file)
|
137 |
+
df, status = parse_po_items_with_filters(text)
|
138 |
+
if df is not None:
|
139 |
+
output_path = save_to_excel(df)
|
140 |
+
return output_path, status
|
141 |
+
return None, status
|
142 |
+
except Exception as e:
|
143 |
+
return None, f"Error during processing: {str(e)}"
|
144 |
+
|
145 |
+
# Gradio Interface Setup
|
146 |
+
def create_gradio_interface():
|
147 |
+
return gr.Interface(
|
148 |
+
fn=process_pdf,
|
149 |
+
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
|
150 |
+
outputs=[
|
151 |
+
gr.File(label="Download Extracted Data"),
|
152 |
+
gr.Textbox(label="Status"),
|
153 |
+
],
|
154 |
+
title="PO Data Extraction",
|
155 |
+
description="Upload a Purchase Order PDF to extract items into an Excel file.",
|
156 |
+
)
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
interface = create_gradio_interface()
|
160 |
+
interface.launch()
|