Spaces:
Sleeping
Sleeping
DSatishchandra
commited on
Update federal_electric.py
Browse files- federal_electric.py +71 -110
federal_electric.py
CHANGED
@@ -1,122 +1,83 @@
|
|
1 |
import pdfplumber
|
2 |
-
import re
|
3 |
import pandas as pd
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
"""
|
8 |
-
|
9 |
-
and
|
10 |
"""
|
|
|
11 |
data = []
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
with pdfplumber.open(pdf_file) as pdf:
|
16 |
-
for page in pdf.pages:
|
17 |
-
# Extract text from page
|
18 |
-
lines = page.extract_text().split("\n")
|
19 |
-
temp_row = None # Temporary row to handle multi-line descriptions
|
20 |
-
|
21 |
-
# Extract Purchase Order Number and Date (Assume it's on the first page)
|
22 |
-
if purchase_order_no is None: # Only extract once
|
23 |
-
po_no_match = re.search(r"Purchase Order No[:\s]+(\S+)", "\n".join(lines))
|
24 |
-
po_date_match = re.search(r"Purchase Order Date[:\s]+(\S+)", "\n".join(lines))
|
25 |
-
|
26 |
-
if po_no_match:
|
27 |
-
purchase_order_no = po_no_match.group(1)
|
28 |
-
if po_date_match:
|
29 |
-
purchase_order_date = po_date_match.group(1)
|
30 |
-
|
31 |
-
# Process each line to extract data
|
32 |
-
for line in lines:
|
33 |
-
# Regex pattern for rows (excluding multi-line descriptions)
|
34 |
-
pattern = r"^\s*(\d+)\s+(\d+)\s+([A-Z0-9_(),\- ]+?)\s+(\d+)\s+(\w+)\s+([\d.]+)\s+([\d\-A-Za-z]+)\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)\s*$"
|
35 |
-
match = re.match(pattern, line)
|
36 |
-
|
37 |
-
if match:
|
38 |
-
# If there's a match, capture the full row
|
39 |
-
if temp_row: # Append the previous temp_row if it exists
|
40 |
-
data.append(temp_row)
|
41 |
-
temp_row = None
|
42 |
-
temp_row = {
|
43 |
-
"S. No": match[1],
|
44 |
-
"Material No": match[2],
|
45 |
-
"Material Description": match[3].strip(),
|
46 |
-
"Qty": int(match[4]),
|
47 |
-
"Unit": match[5],
|
48 |
-
"Price": float(match[6]),
|
49 |
-
"Delivery Date": match[7],
|
50 |
-
"Total Value": float(match[8]),
|
51 |
-
"Vat%": float(match[9]),
|
52 |
-
"Amount Incl. VAT": float(match[10]),
|
53 |
-
}
|
54 |
-
elif temp_row:
|
55 |
-
# If no match, treat it as a continuation of Material Description
|
56 |
-
temp_row["Material Description"] += f" {line.strip()}"
|
57 |
-
|
58 |
-
# Append the last row
|
59 |
-
if temp_row:
|
60 |
-
data.append(temp_row)
|
61 |
-
|
62 |
-
# Create DataFrame
|
63 |
-
df = pd.DataFrame(data)
|
64 |
-
|
65 |
-
# Insert Purchase Order No and Purchase Order Date at the beginning
|
66 |
-
if purchase_order_no and purchase_order_date:
|
67 |
-
df.insert(0, "Purchase Order No", purchase_order_no)
|
68 |
-
df.insert(1, "Purchase Order Date", purchase_order_date)
|
69 |
-
|
70 |
-
# Filter unwanted text from Material Description
|
71 |
-
def clean_description(description):
|
72 |
-
# Define unwanted patterns
|
73 |
-
unwanted_patterns = [
|
74 |
-
r"This document is electronically approved", # Matches exact phrase
|
75 |
-
r"does not require any signature or stamp", # Matches approval notes
|
76 |
-
r"Total Amount Excl\. VAT.*", # Matches totals
|
77 |
-
r"TWO THOUSAND.*ONLY", # Matches written totals
|
78 |
-
r"&", # Removes stray symbols like `&`
|
79 |
-
r"\.+$", # Removes trailing periods
|
80 |
-
]
|
81 |
-
for pattern in unwanted_patterns:
|
82 |
-
description = re.sub(pattern, "", description, flags=re.IGNORECASE).strip()
|
83 |
-
return description
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
elif output_format == "xlsx":
|
103 |
-
df.to_excel(output_file, index=False, engine="openpyxl")
|
104 |
-
|
105 |
-
return output_file
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
outputs=gr.File(label="Download Output"),
|
117 |
-
title="Enhanced PO Data Extractor",
|
118 |
-
description="Extract data from Purchase Orders, including multi-line descriptions, and clean unwanted text or symbols. Download as CSV or Excel."
|
119 |
-
)
|
120 |
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pdfplumber
|
|
|
2 |
import pandas as pd
|
3 |
+
import re
|
4 |
+
|
5 |
+
# Function: Extract Text from PDF
|
6 |
+
def extract_text_from_pdf(pdf_file):
|
7 |
+
with pdfplumber.open(pdf_file.name) as pdf:
|
8 |
+
text = ""
|
9 |
+
for page in pdf.pages:
|
10 |
+
text += page.extract_text()
|
11 |
+
return text
|
12 |
|
13 |
+
# Function: Parse PO Items
|
14 |
+
def parse_po_items_with_filters(text):
|
15 |
"""
|
16 |
+
Parses purchase order items from the extracted text using regex with filters.
|
17 |
+
Handles split descriptions across lines and filters unwanted text.
|
18 |
"""
|
19 |
+
lines = text.splitlines()
|
20 |
data = []
|
21 |
+
current_item = {}
|
22 |
+
description_accumulator = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
for line in lines:
|
25 |
+
# Match the start of an item row
|
26 |
+
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
|
27 |
+
if item_match:
|
28 |
+
# Save the previous item and start a new one
|
29 |
+
if current_item:
|
30 |
+
current_item["Description"] = " ".join(description_accumulator).strip()
|
31 |
+
data.append(current_item)
|
32 |
+
description_accumulator = []
|
33 |
|
34 |
+
current_item = {
|
35 |
+
"Item": item_match.group("Item"),
|
36 |
+
"Description": "",
|
37 |
+
"Qty": "",
|
38 |
+
"Unit": "",
|
39 |
+
"Unit Price": "",
|
40 |
+
"Total Price": "",
|
41 |
+
}
|
42 |
+
description_accumulator.append(item_match.group("Description"))
|
43 |
+
elif current_item:
|
44 |
+
# Handle additional description lines or split descriptions
|
45 |
+
description_accumulator.append(line.strip())
|
46 |
|
47 |
+
# Match Qty, Unit, Unit Price, and Total Price
|
48 |
+
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
|
49 |
+
if qty_match:
|
50 |
+
current_item["Qty"] = qty_match.group("Qty")
|
51 |
+
current_item["Unit"] = qty_match.group(2)
|
52 |
+
|
53 |
+
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
|
54 |
+
if price_match:
|
55 |
+
current_item["Unit Price"] = price_match.group("UnitPrice")
|
56 |
+
current_item["Total Price"] = price_match.group("TotalPrice")
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Save the last item
|
59 |
+
if current_item:
|
60 |
+
current_item["Description"] = " ".join(description_accumulator).strip()
|
61 |
+
data.append(current_item)
|
62 |
+
|
63 |
+
if not data:
|
64 |
+
return None, "No items found. Please check the PDF file format."
|
65 |
+
df = pd.DataFrame(data)
|
66 |
+
return df, "Data extracted successfully."
|
67 |
|
68 |
+
# Function: Save to Excel
|
69 |
+
def save_to_excel(df, output_path="federal_electric_extracted_data.xlsx"):
|
70 |
+
df.to_excel(output_path, index=False)
|
71 |
+
return output_path
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Main function to process PDF
|
74 |
+
def process_pdf(file):
|
75 |
+
try:
|
76 |
+
text = extract_text_from_pdf(file)
|
77 |
+
df, status = parse_po_items_with_filters(text)
|
78 |
+
if df is not None:
|
79 |
+
output_path = save_to_excel(df)
|
80 |
+
return output_path, status
|
81 |
+
return None, status
|
82 |
+
except Exception as e:
|
83 |
+
return None, f"Error during processing: {str(e)}"
|