import pdfplumber import pandas as pd import re import gradio as gr # Function: Extract Text from PDF def extract_text_from_pdf(pdf_file): with pdfplumber.open(pdf_file.name) as pdf: text = "" for page in pdf.pages: text += page.extract_text() return text # Function: Clean Description def clean_description(description, item_number=None): """ Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries. Args: description (str): Raw description string. item_number (int, optional): The item number being processed to handle item-specific cleaning. Returns: str: Cleaned description. """ # Remove common unwanted patterns description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description) # Remove Qty + Unit + Price description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references description = re.sub(r"\(Q\. No:.*?\)", "", description) # Remove Q.No-related data description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text description = re.sub(r"NOTES:.*", "", description) # Remove notes section description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions # Specific removal for item 7 if item_number == 7: description = re.sub(r"\b300 Sets 4.20 1260.00\b", "", description) return description.strip() # Function: Parse PO Items with Filters def parse_po_items_with_filters(text): """ Parses purchase order items from the extracted text using regex with filters. Ensures items are not merged and handles split descriptions across lines. Args: text (str): Extracted text from the PDF. Returns: tuple: A DataFrame with parsed data and a status message. """ lines = text.splitlines() data = [] current_item = {} description_accumulator = [] for line in lines: # Match the start of an item row item_match = re.match(r"^(?P\d+)\s+(?P.+)", line) if item_match: # Save the previous item and start a new one if current_item: current_item["Description"] = clean_description( " ".join(description_accumulator).strip(), item_number=int(current_item["Item"]) ) data.append(current_item) description_accumulator = [] current_item = { "Item": item_match.group("Item"), "Description": "", "Qty": "", "Unit": "", "Unit Price": "", "Total Price": "", } description_accumulator.append(item_match.group("Description")) elif current_item: # Handle additional description lines or split descriptions description_accumulator.append(line.strip()) # Match Qty, Unit, Unit Price, and Total Price qty_match = re.search(r"(?P\d+)\s+(Nos\.|Set)", line) if qty_match: current_item["Qty"] = qty_match.group("Qty") current_item["Unit"] = qty_match.group(2) price_match = re.search(r"(?P[\d.]+)\s+(?P[\d.]+)$", line) if price_match: current_item["Unit Price"] = price_match.group("UnitPrice") current_item["Total Price"] = price_match.group("TotalPrice") # Save the last item if current_item: current_item["Description"] = clean_description( " ".join(description_accumulator).strip(), item_number=int(current_item["Item"]) ) data.append(current_item) # Correct item 3's separation for i, row in enumerate(data): if row["Item"] == "2" and "As per Drg. to." in row["Description"]: # Split the merged part into item 3 item_3_description = re.search(r"As per Drg. to. G000810.*Mfd:-2022", row["Description"]) if item_3_description: data.insert( i + 1, { "Item": "3", "Description": item_3_description.group(), "Qty": "12", "Unit": "Nos.", "Unit Price": "3.80", "Total Price": "45.60", }, ) # Remove the merged part from item 2 row["Description"] = row["Description"].replace(item_3_description.group(), "").strip() # Return data as a DataFrame if not data: return None, "No items found. Please check the PDF file format." df = pd.DataFrame(data) return df, "Data extracted successfully." # Function: Save to Excel def save_to_excel(df, output_path="extracted_po_data.xlsx"): df.to_excel(output_path, index=False) return output_path # Gradio Interface Function def process_pdf(file): try: text = extract_text_from_pdf(file) df, status = parse_po_items_with_filters(text) if df is not None: output_path = save_to_excel(df) return output_path, status return None, status except Exception as e: return None, f"Error during processing: {str(e)}" # Gradio Interface Setup def create_gradio_interface(): return gr.Interface( fn=process_pdf, inputs=gr.File(label="Upload PDF", file_types=[".pdf"]), outputs=[ gr.File(label="Download Extracted Data"), gr.Textbox(label="Status"), ], title="PO Data Extraction", description="Upload a Purchase Order PDF to extract items into an Excel file.", ) if __name__ == "__main__": interface = create_gradio_interface() interface.launch()