import pdfplumber import pandas as pd import gradio as gr import re import tempfile # Define function to extract data def extract_data(pdf_file): data = [] columns = ["Purchase Order No", "Date", "SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"] # Set default values purchase_order_no = "Not Found" purchase_order_date = "Not Found" try: with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text = page.extract_text() if not text: continue # Skip pages without text lines = text.splitlines() # Attempt to dynamically extract Purchase Order No and Date from the first page for line in lines: # Search for Purchase Order No po_match = re.search(r'Purchase Order No[:\s]+(\d+)', line, re.IGNORECASE) if po_match: purchase_order_no = po_match.group(1) # Search for Date date_match = re.search(r'Date[:\s]+(\d{2}\.\d{2}\.\d{4})', line, re.IGNORECASE) if date_match: purchase_order_date = date_match.group(1) # Stop if both values are found if purchase_order_no != "Not Found" and purchase_order_date != "Not Found": break # Process lines to extract row data, looking for rows that start with SI No for line in lines: try: # Match lines that start with an SI number (e.g., "10", "20") si_no_match = re.match(r'^(\d+)\s', line) if si_no_match: parts = line.split() # Extract SI No si_no = parts[0] # Extract Material Number and format the Material Description material_number = parts[2] if len(parts) > 2 else "Unknown" material_desc = f"BPS 017507\nMaterial Number: {material_number}\nHSN Code: 8310\nIGST: 18%" # Extract Unit, Quantity, Dely Qty, Dely Date, Unit Rate, and Value unit = parts[3] if len(parts) > 3 else "NO" # Default to "NO" if not found quantity = int(parts[4]) if len(parts) > 4 else 0 dely_qty = int(parts[5]) if len(parts) > 5 else 0 dely_date = parts[6] if len(parts) > 6 else "Unknown" unit_rate = float(parts[7]) if len(parts) > 7 else 0.0 value = float(parts[8]) if len(parts) > 8 else 0.0 # Append extracted data in the specified order data.append([ purchase_order_no, purchase_order_date, si_no, material_desc, unit, quantity, dely_qty, dely_date, unit_rate, value ]) except (ValueError, IndexError) as e: print(f"Error processing line: {line} - {e}") continue # Skip lines that do not match the expected format # Convert data to DataFrame and save as Excel df = pd.DataFrame(data, columns=columns) # Generate a temporary file path for the Excel file with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file: excel_path = tmp_file.name df.to_excel(excel_path, index=False) except Exception as e: print(f"An error occurred while processing the PDF: {e}") return None # Log warning if data was not found for Purchase Order No or Date if purchase_order_no == "Not Found" or purchase_order_date == "Not Found": print("Warning: 'Purchase Order No' or 'Date' was not found in the PDF.") return excel_path # Set up Gradio interface iface = gr.Interface( fn=extract_data, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor" ) # Launch the app iface.launch()