import pdfplumber import pandas as pd import gradio as gr import re # Define function to extract data def extract_data(pdf_file): data = [] columns = ["Purchase Order No", "Date", "SI No", "Material Number", "Material Description", "HSN Code", "IGST", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"] # Example Purchase Order Details (Adjust accordingly) purchase_order_no = "7200018552" purchase_order_date = "28.09.2024" with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text = page.extract_text().splitlines() for i, line in enumerate(text): parts = line.split() try: si_no = int(parts[0]) # Extract SI No if si_no % 10 == 0: # Assuming SI numbers are in multiples of 10 # Extracting fields based on pattern and order as per the provided format material_desc = "BPS 017507" # Based on your example; adjust if dynamic material_number = parts[3] if "Material" in parts else "220736540000" # Default if not found hsn_code = "8310" # Fixed HSN Code igst = "18%" # Fixed IGST unit = parts[4] quantity = int(parts[5]) dely_qty = int(parts[6]) dely_date = parts[7] unit_rate = float(parts[8]) value = float(parts[9]) # Append extracted data in specified order data.append([ purchase_order_no, purchase_order_date, si_no, material_number, material_desc, hsn_code, igst, unit, quantity, dely_qty, dely_date, unit_rate, value ]) except (ValueError, IndexError): continue # Skip lines that don't match the format # Convert to DataFrame with specified columns df = pd.DataFrame(data, columns=columns) excel_path = "/tmp/Extracted_Purchase_Order_Data.xlsx" df.to_excel(excel_path, index=False) return excel_path # Set up Gradio interface iface = gr.Interface( fn=extract_data, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor" ) # Launch the app iface.launch()