import pdfplumber import pandas as pd import gradio as gr import re # Define function to extract data def extract_data(pdf_file): data = [] columns = ["Purchase Order No", "Date", "SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"] purchase_order_no = None purchase_order_date = None with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: text = page.extract_text().splitlines() # Extract Purchase Order No and Date dynamically from the first page if not purchase_order_no or not purchase_order_date: for line in text: # Search for Purchase Order No po_match = re.search(r'Purchase Order No[:\s]+(\d+)', line) if po_match: purchase_order_no = po_match.group(1) # Search for Date date_match = re.search(r'Date[:\s]+(\d{2}\.\d{2}\.\d{4})', line) if date_match: purchase_order_date = date_match.group(1) # Stop searching if both fields are found if purchase_order_no and purchase_order_date: break # Process each line to extract relevant data rows for line in text: # Using regex or keywords to identify each row try: # Example row pattern match for SI No (Assuming starts with numbers in multiples of 10) if re.match(r'^\d+\s', line): parts = line.split() si_no = parts[0] # Extract SI No material_desc = "BPS 017507\nMaterial Number: {}\nHSN Code: 8310\nIGST: 18%".format(parts[2]) # Example Material Description unit = "NO" quantity = parts[3] dely_qty = parts[4] dely_date = parts[5] unit_rate = parts[6] value = parts[7] # Append data as a row in the correct order data.append([ purchase_order_no, purchase_order_date, si_no, material_desc, unit, quantity, dely_qty, dely_date, unit_rate, value ]) except (ValueError, IndexError): continue # Skip lines that do not match the expected pattern # Convert data to a DataFrame and save it as Excel df = pd.DataFrame(data, columns=columns) excel_path = "/tmp/Extracted_Purchase_Order_Data.xlsx" df.to_excel(excel_path, index=False) return excel_path # Set up Gradio interface iface = gr.Interface( fn=extract_data, inputs=gr.File(label="Upload PDF"), outputs=gr.File(label="Download Excel"), title="PDF Data Extractor" ) # Launch the app iface.launch()