Spaces:
Runtime error
Runtime error
DSatishchandra
commited on
Commit
•
f0ffae0
1
Parent(s):
df2a3af
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
menu = {
|
19 |
-
'Pizza': ['Cheese', 'Pepperoni', 'Vegetarian'],
|
20 |
-
'Beverages': ['Coke', 'Pepsi', 'Water']
|
21 |
-
}
|
22 |
-
|
23 |
-
# Function to process the order
|
24 |
-
def process_order(order):
|
25 |
-
if 'pizza' in order.lower():
|
26 |
-
return "What type of pizza would you like? Cheese, Pepperoni, or Vegetarian?"
|
27 |
-
elif 'coke' in order.lower():
|
28 |
-
return "One Coke added to your order."
|
29 |
-
else:
|
30 |
-
return "Sorry, we didn't catch that. Please try again."
|
31 |
-
|
32 |
-
# Function to handle speech recognition from audio files or microphone
|
33 |
-
def recognize_speech(audio):
|
34 |
-
try:
|
35 |
-
# If audio is from file, use SpeechRecognition to convert speech to text
|
36 |
-
if isinstance(audio, str): # Audio file input (filepath)
|
37 |
-
with sr.AudioFile(audio) as source:
|
38 |
-
audio_data = recognizer.record(source)
|
39 |
-
text = recognizer.recognize_google(audio_data)
|
40 |
-
else: # Audio from microphone input
|
41 |
-
text = recognizer.recognize_google(audio)
|
42 |
-
|
43 |
-
print(f"Recognized text: {text}") # Print the recognized text for debugging
|
44 |
-
|
45 |
-
response = process_order(text)
|
46 |
-
|
47 |
-
# Using gTTS to respond back with speech
|
48 |
-
tts = gTTS(text=response, lang='en')
|
49 |
-
tts.save("response.mp3")
|
50 |
-
|
51 |
-
# Play the MP3 response using pygame
|
52 |
-
pygame.mixer.music.load("response.mp3")
|
53 |
-
pygame.mixer.music.play()
|
54 |
-
|
55 |
-
return response
|
56 |
-
except Exception as e:
|
57 |
-
print(f"Error: {e}") # Print the error for debugging
|
58 |
-
return "Sorry, I could not understand."
|
59 |
|
60 |
# Gradio Interface for the app
|
61 |
def create_gradio_interface():
|
@@ -66,10 +25,11 @@ def create_gradio_interface():
|
|
66 |
audio_input = gr.Audio(type="filepath", label="Speak to the bot (Upload or Record Audio)")
|
67 |
|
68 |
# Display the bot's response after recognition
|
69 |
-
|
|
|
70 |
|
71 |
# Define the button to process the audio input
|
72 |
-
audio_input.change(fn=
|
73 |
|
74 |
return demo
|
75 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, TFAutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Initialize Hugging Face pipelines
|
6 |
+
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
7 |
+
text_to_speech = pipeline("text-to-speech", model="facebook/tacotron2", device=0) # Set device to CPU (0) or GPU (cuda)
|
8 |
+
|
9 |
+
# Function to process speech to text and text to speech
|
10 |
+
def process_audio(input_audio):
|
11 |
+
# Convert the audio to text using Whisper model (speech-to-text)
|
12 |
+
recognized_text = speech_to_text(input_audio)["text"]
|
13 |
+
print(f"Recognized text: {recognized_text}")
|
14 |
+
|
15 |
+
# Process the text to speech using Tacotron2 model
|
16 |
+
audio_response = text_to_speech(recognized_text)
|
17 |
+
return audio_response, recognized_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Gradio Interface for the app
|
20 |
def create_gradio_interface():
|
|
|
25 |
audio_input = gr.Audio(type="filepath", label="Speak to the bot (Upload or Record Audio)")
|
26 |
|
27 |
# Display the bot's response after recognition
|
28 |
+
output_audio = gr.Audio(label="Bot Response", type="numpy")
|
29 |
+
output_text = gr.Textbox(label="Bot Response (Text)")
|
30 |
|
31 |
# Define the button to process the audio input
|
32 |
+
audio_input.change(fn=process_audio, inputs=audio_input, outputs=[output_audio, output_text])
|
33 |
|
34 |
return demo
|
35 |
|