music2 / app.py
DanLeBossDeESGI's picture
Create app.py
874197b
import gradio as gr
import torch
from diffusers import MusicLDMPipeline
# make Space compatible with CPU duplicates
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
# load the diffusers pipeline
pipe = MusicLDMPipeline.from_pretrained("cvssp/musicldm", torch_dtype=torch_dtype).to(device)
# set the generator for reproducibility
generator = torch.Generator(device)
def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates):
if text is None:
raise gr.Error("Please provide a text input.")
waveforms = pipe(
text,
audio_length_in_s=duration,
guidance_scale=guidance_scale,
num_inference_steps=200,
negative_prompt=negative_prompt,
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
generator=generator.manual_seed(int(random_seed)),
)["audios"]
return gr.make_waveform((16000, waveforms[0]), bg_image="bg.png")
iface = gr.Blocks()
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
</h1>
</div> <p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2308.01546">[Paper]</a> <a href="https://musicldm.github.io/">[Project
page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/musicldm">[🧨
Diffusers]</a>
</p>
</div>
"""
)
gr.HTML("""This is the demo for MusicLDM, powered by 🧨 Diffusers. Demo uses the base checkpoint <a
href="https://huggingface.co/ircam-reach/musicldm"> ircam-reach/musicldm </a>. For faster inference without waiting in
queue, you may want to duplicate the space and upgrade to a GPU in the settings.""")
gr.DuplicateButton()
with gr.Group():
textbox = gr.Textbox(
value="Western music, chill out, folk instrument R & B beat",
max_lines=1,
label="Input text",
info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.",
elem_id="prompt-in",
)
negative_textbox = gr.Textbox(
value="low quality, average quality",
max_lines=1,
label="Negative prompt",
info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.",
elem_id="prompt-in",
)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(
value=42,
label="Seed",
info="Change this value (any integer number) will lead to a different generation result.",
)
duration = gr.Slider(5, 15, value=10, step=2.5, label="Duration (seconds)")
guidance_scale = gr.Slider(
0,
7,
value=3.5,
step=0.5,
label="Guidance scale",
info="Larger => better quality and relevancy to text; Smaller => better diversity",
)
n_candidates = gr.Slider(
1,
5,
value=3,
step=1,
label="Number waveforms to generate",
info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A larger value usually lead to better quality with heavier computation",
)
outputs = gr.Video(label="Output", elem_id="output-video")
btn = gr.Button("Submit")
btn.click(
text2audio,
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
)
gr.HTML(
"""
<div class="footer" style="text-align: center">
<p>Share your generations with the community by clicking the share icon at the top right the generated audio!</p>
<p>Follow the latest updates of MusicLDM on our<a href="https://musicldm.github.io/"
style="text-decoration: underline;" target="_blank"> project page </a> </p>
<p>Model by <a
href="https://www.knutchen.com" style="text-decoration: underline;" target="_blank">Ke Chen</a>. Code and demo by πŸ€— Hugging Face.</p>
</div>
"""
)
gr.Examples(
[
["Light rhythm techno", "low quality, average quality", 10, 3.5, 42, 3],
["Futuristic drum and bass", "low quality, average quality", 10, 3.5, 42, 3],
["Royal Film Music Orchestra", "low quality, average quality", 10, 3.5, 42, 3],
["Elegant and gentle tunes of string quartet + harp", "low quality, average quality", 10, 3.5, 42, 3],
["A fantastic piece of music with the deep sound of overlapping pianos", "low quality, average quality", 10, 3.5, 42, 3],
["Gentle live acoustic guitar", "low quality, average quality", 10, 3.5, 42, 3],
["Lyrical ballad played by saxophone", "low quality, average quality", 10, 3.5, 42, 3],
],
fn=text2audio,
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
cache_examples=True,
)
gr.HTML(
"""
<div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated
Audio</p>
<p>1. Try using more adjectives to describe your sound. For example: "Techno music with high melodic
riffs and euphoric melody" is better than "Techno".</p>
<p>2. Try using different random seeds, which can significantly affect the quality of the generated
output.</p>
<p>3. It's better to use general terms like 'techno' or 'jazz' instead of specific names for genres,
artists or styles that the model may not be familiar with.</p>
<p>4. Using a negative prompt to not guide the diffusion process can improve the
audio quality significantly. Try using negative prompts like 'low quality'.</p>
</div>
"""
)
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from the <a href="https://audiostock.net//">Audiostock</a>,
dataset. The model is licensed as CC-BY-NC-4.0.
</p>
</div>
"""
)
iface.queue(max_size=20).launch()