File size: 3,610 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#pragma once

#include "llama.h"

#include "common.h"

#include <string>
#include <vector>

// common_sampler extends llama_sampler with additional functionality:
//
//  - grammar support
//  - custom sampler logic based on the parameters
//  - history of the last accepted tokens
//  - performance metrics
//
// This goal is to have a common implementation of the sampling logic shared across the examples.
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
// complex (top-k, top-p, etc).
//
// Another example is related to the grammar. In general, the grammar constraints applied on the full
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
// grammar constraints are applied to the full vocabulary and the token is resampled.
//
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
// be moved into the core llama library.
//
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
// This can be used to access the probabilities of the rest of the non-sampled tokens.
//
// TODO: measure grammar performance
//

struct common_sampler;

// llama_sampler API overloads

struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);

void common_sampler_free(struct common_sampler * gsmpl);

// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
void                    common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
void                    common_sampler_reset (struct common_sampler * gsmpl);
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);

// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);

// extended sampling implementation:
//
// - set logits
// - apply the configured sampler chain
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);

uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);

// helpers

// access the internal list of current candidate tokens
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);

// get the last accepted token
llama_token common_sampler_last(const struct common_sampler * gsmpl);

// print the sampler chain into a string
std::string common_sampler_print(const struct common_sampler * gsmpl);

// get a string representation of the last accepted tokens
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);

char        common_sampler_type_to_chr(enum common_sampler_type cnstr);
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);

std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);