File size: 35,286 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "log.h"

#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <cinttypes>
#include <ctime>
#include <random>
#include <stdexcept>
#include <sstream>
#include <algorithm>
#include <string>

// GGUF keys & tensor names.

#define KV_GENERAL_ARCHITECTURE          "general.architecture"
#define KV_GENERAL_NAME                  "general.name"

#define KV_TOKENIZER_MODEL               "tokenizer.ggml.model"
#define KV_TOKENIZER_LIST                "tokenizer.ggml.tokens"
#define KV_TOKENIZER_TOKEN_TYPE          "tokenizer.ggml.token_type"
#define KV_TOKENIZER_SCORES              "tokenizer.ggml.scores"
#define KV_TOKENIZER_BOS_ID              "tokenizer.ggml.bos_token_id"
#define KV_TOKENIZER_EOS_ID              "tokenizer.ggml.eos_token_id"
#define KV_TOKENIZER_UNK_ID              "tokenizer.ggml.unknown_token_id"
#define KV_TOKENIZER_SEP_ID              "tokenizer.ggml.seperator_token_id"
#define KV_TOKENIZER_PAD_ID              "tokenizer.ggml.padding_token_id"
#define KV_TOKENIZER_HF_JSON             "tokenizer.huggingface.json"

#define KV_CONTEXT_LENGTH                "llama.context_length"
#define KV_EMBEDDING_LENGTH              "llama.embedding_length"
#define KV_BLOCK_COUNT                   "llama.block_count"
#define KV_FEED_FORWARD_LENGTH           "llama.feed_forward_length"
#define KV_ATTENTION_HEAD_COUNT          "llama.attention.head_count"
#define KV_ATTENTION_HEAD_COUNT_KV       "llama.attention.head_count_kv"
#define KV_ATTENTION_LAYERNORM_RMS_EPS   "llama.attention.layer_norm_rms_epsilon"
#define KV_ROPE_DIMENSION_COUNT          "llama.rope.dimension_count"

#define TN_TOKEN_EMBD  "token_embd.weight"
#define TN_OUTPUT_NORM "output_norm.weight"
#define TN_OUTPUT      "output.weight"
#define TN_ATTN_NORM   "blk.%d.attn_norm.weight"
#define TN_ATTN_Q      "blk.%d.attn_q.weight"
#define TN_ATTN_K      "blk.%d.attn_k.weight"
#define TN_ATTN_V      "blk.%d.attn_v.weight"
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
#define TN_FFN_NORM    "blk.%d.ffn_norm.weight"
#define TN_FFN_GATE    "blk.%d.ffn_gate.weight"
#define TN_FFN_DOWN    "blk.%d.ffn_down.weight"
#define TN_FFN_UP      "blk.%d.ffn_up.weight"

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#define LLAMA_FILE_MAGIC_GGJT        0x67676a74u // 'ggjt'
#define LLAMA_FILE_VERSION_GGJT_V3   3

#define TOKENIZER_NAME "llama"
#define UNKNOWN_TOKEN_ID 0
#define BOS_TOKEN_ID 1
#define EOS_TOKEN_ID 2

//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
typedef struct {
    int dim; // transformer dimension
    int hidden_dim; // for ffn layers
    int n_layers; // number of layers
    int n_heads; // number of query heads
    int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
    int vocab_size; // vocabulary size, usually 256 (byte-level)
    int seq_len; // max sequence length
} Config;

struct TransformerWeights {
    // token embedding table
    std::vector<float> token_embedding_table;    // (vocab_size, dim)
    // weights for rmsnorms
    std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
    std::vector<float> rms_ffn_weight; // (layer, dim)
    // weights for matmuls
    std::vector<float> wq; // (layer, dim, dim)
    std::vector<float> wk; // (layer, dim, dim)
    std::vector<float> wv; // (layer, dim, dim)
    std::vector<float> wo; // (layer, dim, dim)
    // weights for ffn
    std::vector<float> w1; // (layer, hidden_dim, dim)
    std::vector<float> w2; // (layer, dim, hidden_dim)
    std::vector<float> w3; // (layer, hidden_dim, dim)
    // final rmsnorm
    std::vector<float> rms_final_weight; // (dim,)
    // freq_cis for RoPE relatively positional embeddings
    // std::vector<float> freq_cis_real; // (seq_len, dim/2)
    // std::vector<float> freq_cis_imag; // (seq_len, dim/2)
    // (optional) classifier weights for the logits, on the last layer
    std::vector<float> wcls;
};

static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
    const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
    try {
        w->token_embedding_table.resize(p->vocab_size * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);

        w->rms_att_weight.resize(p->n_layers * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);

        w->rms_ffn_weight.resize(p->n_layers * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);

        w->wq.resize(p->n_layers * p->dim * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);

        w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);

        w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);

        w->wo.resize(p->n_layers * p->dim * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);

        w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);

        w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);

        w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
        LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);

        w->rms_final_weight.resize(p->dim);
        LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);

        if (shared_weights) {
            w->wcls = {};
        } else {
            w->wcls.resize(p->vocab_size * p->dim);
            LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
        }
    }
    catch (std::length_error &) {
        die("Invalid configuration. Failed to allocate memory for weights");
    }
}

static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
    if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
    if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
    if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
    if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
    if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
    if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
    if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
    if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
    if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
    if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
    if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;

    // Skip freq_cis_real & freq_cis_imag
    int head_size = p->dim / p->n_heads;
    fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);

    if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;

    // Check we didn't forget to read anything
    auto curr = ftell(f);
    fseek(f, 0, SEEK_END);
    auto end = ftell(f);
    if (curr != end) {
        LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end =  %ld)\n", __func__, curr, end);
        return 1;
    }

    return 0;
}

static void print_sample_weights(TransformerWeights *w){
    LOG_INF("----- Quick print of first of the weight vales of all the variables\n");
    LOG_INF("%f\n", w->token_embedding_table[0]);
    LOG_INF("%f\n", w->rms_att_weight[0]);
    LOG_INF("%f\n", w->rms_ffn_weight[0]);

    LOG_INF("%f\n", w->wq[0]);
    LOG_INF("%f\n", w->wk[0]);
    LOG_INF("%f\n", w->wv[0]);
    LOG_INF("%f\n", w->wo[0]);
    LOG_INF("%f\n", w->w1[0]);
    LOG_INF("%f\n", w->w2[0]);
    LOG_INF("%f\n", w->w3[0]);
    LOG_INF("%f\n", w->rms_att_weight[0]);
    if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.

struct my_llama_vocab {
    using id    = int32_t;
    using token = std::string;
    using ttype = llama_token_type;

    struct token_data {
        token text;
        float score;
        ttype type;
    };

    std::unordered_map<token, id> token_to_id;
    std::vector<token_data> id_to_token;
};

struct my_llama_hparams {
    uint32_t n_vocab   = 32000;
    uint32_t n_ctx     = 512;   // this is provided as user input?
    uint32_t n_embd    = 4096;
    uint32_t n_ff      = 11008;
    uint32_t n_mult    = 4;
    uint32_t n_head    = 32;
    uint32_t n_head_kv = 32;
    uint32_t n_layer   = 32;
    uint32_t n_rot     = 64;

    bool operator!=(const my_llama_hparams& other) const {
        return memcmp(this, &other, sizeof(my_llama_hparams));
    }
};

struct my_llama_layer {
    // normalization
    struct ggml_tensor * attention_norm;

    // attention
    struct ggml_tensor * wq;
    struct ggml_tensor * wk;
    struct ggml_tensor * wv;
    struct ggml_tensor * wo;

    // normalization
    struct ggml_tensor * ffn_norm;

    // ff
    struct ggml_tensor * w1;
    struct ggml_tensor * w2;
    struct ggml_tensor * w3;
};

struct my_llama_model {
    struct ggml_context * ctx = NULL;

    std::string name;

    my_llama_hparams hparams;

    struct ggml_tensor * tok_embeddings;

    struct ggml_tensor * norm;
    struct ggml_tensor * output;

    std::vector<my_llama_layer> layers;

    uint32_t train_its = 0;
    uint32_t train_samples = 0;
    uint32_t train_tokens = 0;
};

struct train_params {
    const char * fn_vocab_model;
    const char * fn_llama2c_model;
    const char * fn_llama2c_output_model;
    const char * fn_train_data;
    const char * fn_checkpoint_in;
    const char * fn_checkpoint_out;
    const char * fn_model_out;

    uint32_t seed;

    int n_ctx;
    int n_embd;
    int n_mult;
    int n_head;
    int n_layer;
    int n_rotmax;

    int n_threads;
    int n_batch;
    int n_examples;
    int n_predict;

    int print_info_interval;
    int print_details_interval;

    bool samples_start_after_nl;
    bool use_adam;
    bool use_flash;
    bool use_scratch;

    // only adam
    int   warmup;
    int   cos_decay_steps;
    float cos_decay_restart;
    float cos_decay_alpha;

    int   lbfgs_n_iter;
    int   adam_n_iter;
    float adam_alpha;
    float adam_decay;

    int mem_model_gb;
    int mem_compute_gb;
    int mem_compute0_gb;
    int mem_compute1_gb;
};

static void print_params(struct my_llama_hparams * params) {
    LOG_INF("%s: n_vocab:   %u\n", __func__, params->n_vocab);
    LOG_INF("%s: n_ctx:     %u\n", __func__, params->n_ctx);
    LOG_INF("%s: n_embd:    %u\n", __func__, params->n_embd);
    LOG_INF("%s: n_mult:    %u\n", __func__, params->n_mult);
    LOG_INF("%s: n_head:    %u\n", __func__, params->n_head);
    LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
    LOG_INF("%s: n_ff:      %u\n", __func__, params->n_ff);
    LOG_INF("%s: n_layer:   %u\n", __func__, params->n_layer);
    LOG_INF("%s: n_rot:     %u\n", __func__, params->n_rot);
}

static void print_tensor_info(const struct ggml_context * ctx) {
    for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
        LOG_INF("%s: Allocating ", __func__);
        int64_t total = 1;
        int i = 0;
        for (; i < ggml_n_dims(t); ++i) {
            if (i > 0) LOG("x ");
            LOG("[%" PRId64 "] ", t->ne[i]);
            total *= t->ne[i];
        }
        if (i > 1) LOG("= [%" PRId64 "] ", total);
        LOG("float space for %s\n", ggml_get_name(t));
    }
}

static void init_model(struct my_llama_model * model) {
    const auto & hparams = model->hparams;

    const uint32_t n_embd  = hparams.n_embd;
    const uint32_t n_layer = hparams.n_layer;
    const uint32_t n_vocab = hparams.n_vocab;

    const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;

    const uint32_t n_ff = hparams.n_ff;
    struct ggml_context * ctx = model->ctx;

    model->train_its = 0;
    model->train_samples = 0;
    model->train_tokens = 0;

    model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
    model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
    model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);

    ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
    ggml_set_name(model->norm,           "norm.weight");
    ggml_set_name(model->output,         "output.weight");

    model->layers.resize(n_layer);
    for (uint32_t i = 0; i < n_layer; ++i) {
        auto & layer = model->layers[i];

        std::string layers_i = "layers." + std::to_string(i);

        layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
        layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
        layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
        layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);

        layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
        layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
        layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);

        ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());

        ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
        ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
        ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
        ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());

        ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());

        ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
        ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
        ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
    }

    print_tensor_info(ctx);
}

static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
    float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    return *ptr;
}

static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
    int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    return *ptr;
}

static void print_row(struct ggml_tensor * probs, int i) {
    for (int k = 0; k < probs->ne[0]; ++k) {
        float p = get_f32_2d(probs, k, i);
        LOG(" %f", p);
    }
    LOG("\n");
}

static void print_matrix(struct ggml_tensor * probs) {
    assert(ggml_is_matrix(probs));
    for (int i = 0; i < probs->ne[1]; ++i) {
        for (int k = 0; k < probs->ne[0]; ++k) {
            float p = get_f32_2d(probs, k, i);
            LOG(" %.2f", p);
        }
        LOG("\n");
    }
}

struct llama_file {
    // use FILE * so we don't have to re-open the file to mmap
    FILE * fp;
    size_t size;

    llama_file(const char * fname, const char * mode) {
        fp = std::fopen(fname, mode);
        if (fp == NULL) {
            size = 0;
        } else {
            seek(0, SEEK_END);
            size = tell();
            seek(0, SEEK_SET);
        }
    }

    size_t tell() const {
#ifdef _WIN32
        __int64 ret = _ftelli64(fp);
#else
        long ret = std::ftell(fp);
#endif
        GGML_ASSERT(ret != -1); // this really shouldn't fail
        return (size_t) ret;
    }

    void seek(size_t offset, int whence) {
#ifdef _WIN32
        int ret = _fseeki64(fp, (__int64) offset, whence);
#else
        int ret = std::fseek(fp, (long) offset, whence);
#endif
        GGML_ASSERT(ret == 0); // same
    }

    void read_raw(void * ptr, size_t size) {
        if (size == 0) {
            return;
        }
        errno = 0;
        std::size_t ret = std::fread(ptr, size, 1, fp);
        if (ferror(fp)) {
            die_fmt("fread failed: %s", strerror(errno));
        }
        if (ret != 1) {
            die("unexpectedly reached end of file");
        }
    }

    std::uint32_t read_u32() {
        std::uint32_t ret;
        read_raw(&ret, sizeof(ret));
        return ret;
    }
    std::float_t read_f32() {
        std::float_t ret;
        read_raw(&ret, sizeof(ret));
        return ret;
    }

    std::string read_string(std::uint32_t len) {
        std::vector<char> chars(len);
        read_raw(chars.data(), len);
        return std::string(chars.data(), len);
    }

    ~llama_file() {
        if (fp) {
            std::fclose(fp);
        }
    }
};

static bool is_ggml_file(const char * filename) {
    llama_file file(filename, "rb");
    if (file.size < 4) {
        return false;
    }
    std::string magic = file.read_string(4);
    return magic == GGUF_MAGIC;
}

static std::string llama_escape_whitespaces(const std::string & text) {
    std::ostringstream out;
    for (char c : text) {
        if (c == ' ') out << "\xe2\x96\x81";
        else out << c;
    }
    return out.str();
}

static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) {
    if (is_ggml_file(filename)) {
        LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
        struct ggml_context * ctx_data = NULL;

        struct gguf_init_params params = {
            /*.no_alloc = */ false,
            /*.ctx      = */ &ctx_data,
        };

        struct gguf_context * ctx = gguf_init_from_file(filename, params);
        GGML_ASSERT(ctx != NULL);

        const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
        GGML_ASSERT(model_idx >= 0);
        std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
        GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);

        const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
        GGML_ASSERT(token_idx >= 0);

        const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
        GGML_ASSERT(score_idx >= 0);
        const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);

        const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
        GGML_ASSERT(toktype_idx >= 0);
        const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);

        const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
        if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
            die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
        }

        vocab->id_to_token.resize(n_vocab);

        for (uint32_t i = 0; i < n_vocab; i++) {
            std::string word = gguf_get_arr_str(ctx, token_idx, i);

            vocab->token_to_id[word] = i;

            auto & token_data = vocab->id_to_token[i];
            token_data.text  = std::move(word);
            token_data.score = scores[i];
            token_data.type  = (llama_token_type) toktypes[i];
        }
        ggml_free(ctx_data);
        gguf_free(ctx);
    } else {
        // assume llama2.c vocabulary
        LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
        llama_file file(filename, "rb");
        if (!file.fp) {
            die_fmt("%s: %s", strerror(errno), filename);
        }
        const int  n_vocab = config->vocab_size;
        /* uint32_t max_token_length =  */ file.read_u32(); // unused
        vocab->id_to_token.resize(n_vocab);
        for (my_llama_vocab::id id=0; id<n_vocab; ++id) {
            float_t score = file.read_f32();
            uint32_t len = file.read_u32();
            std::string text = file.read_string(len);

            unsigned char byte_val;
            my_llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
            if (id == UNKNOWN_TOKEN_ID) {
                text = "<unk>";
                type = LLAMA_TOKEN_TYPE_UNKNOWN;
            } else if (id == BOS_TOKEN_ID) {
                text = "<s>";
                type = LLAMA_TOKEN_TYPE_CONTROL;
            } else if (id == EOS_TOKEN_ID) {
                text = "</s>";
                type = LLAMA_TOKEN_TYPE_CONTROL;
            } else if (text.empty()) {
                type = LLAMA_TOKEN_TYPE_CONTROL;
            } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
                // Text of byte tokens is already in the expected format.
                type = LLAMA_TOKEN_TYPE_BYTE;
            } else {
                type = LLAMA_TOKEN_TYPE_NORMAL;
            }
            text = llama_escape_whitespaces(text);

            vocab->id_to_token[id].text = text;
            vocab->id_to_token[id].score = score;
            vocab->id_to_token[id].type = type;
            vocab->token_to_id.emplace(text, id);
        }
    }
}

static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
    int size = 1;
    for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
        size *= gg_weights->ne[dim];
    }
    for (int ct = 0; ct < size; ++ct) {
        int64_t i0 = 0; int64_t i1 = 0;
        int64_t i2 = 0; int64_t i3 = 0;
        ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
        ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
    }
}

static void save_as_llama_model(
    struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
) {
    // convert AK weights into GG weights one by one.
    // w->token_embedding_table -> model->tok_embeddings
    // float*                   -> struct ggml_tensor
    convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
    convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());

    convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
    //print_row(model->norm, 0);

    // for rms-att-weight
    int row_length = model->hparams.n_embd;
    int n_ff = model->hparams.n_ff;

    const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;

    for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
        auto & layer = model->layers[i];
        // 1d
        convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
        convert_weights_ak_to_gg(layer.ffn_norm      , &w->rms_ffn_weight[i*row_length]);

        // from 3d matrix layer x dim x dim to 2d matrix dim x dim
        convert_weights_ak_to_gg(layer.wq            , &w->wq[i*row_length*row_length]);
        convert_weights_ak_to_gg(layer.wo            , &w->wo[i*row_length*row_length]);
        // from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
        convert_weights_ak_to_gg(layer.wk            , &w->wk[i*row_length*row_length/n_multiqueries]);
        convert_weights_ak_to_gg(layer.wv            , &w->wv[i*row_length*row_length/n_multiqueries]);

        convert_weights_ak_to_gg(layer.w1            , &w->w1[i*row_length*n_ff]);
        convert_weights_ak_to_gg(layer.w2            , &w->w2[i*n_ff*row_length]);
        convert_weights_ak_to_gg(layer.w3            , &w->w3[i*row_length*n_ff]);
    }

    struct gguf_context * ctx = gguf_init_empty();

    std::vector<const char*> tokens;
    std::vector<float> scores;
    std::vector<llama_token_type> token_types;
    for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) {
        tokens.push_back(token_data.text.c_str());
        scores.push_back(token_data.score);
        token_types.push_back(token_data.type);
    }
    gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
    gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
    gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());

    gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);

    gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
    gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");

    // special tokens
    gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
    gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
    gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
    gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
    gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);

    gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
    gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
    gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
    gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
    gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
    gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
    gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
    gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
    gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);

    // write tensors
    ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
    gguf_add_tensor(ctx, model->tok_embeddings);

    ggml_set_name(model->norm, TN_OUTPUT_NORM);
    gguf_add_tensor(ctx, model->norm);

    ggml_set_name(model->output, TN_OUTPUT);
    gguf_add_tensor(ctx, model->output);

    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
        auto & layer = model->layers[i];

        ggml_format_name(layer.wq, TN_ATTN_Q, i);
        gguf_add_tensor(ctx, layer.wq);

        ggml_format_name(layer.wk, TN_ATTN_K, i);
        gguf_add_tensor(ctx, layer.wk);

        ggml_format_name(layer.wv, TN_ATTN_V, i);
        gguf_add_tensor(ctx, layer.wv);

        ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
        gguf_add_tensor(ctx, layer.wo);

        ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
        gguf_add_tensor(ctx, layer.attention_norm);

        ggml_format_name(layer.w1, TN_FFN_GATE, i);
        gguf_add_tensor(ctx, layer.w1);

        ggml_format_name(layer.w2, TN_FFN_DOWN, i);
        gguf_add_tensor(ctx, layer.w2);

        ggml_format_name(layer.w3, TN_FFN_UP, i);
        gguf_add_tensor(ctx, layer.w3);

        ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
        gguf_add_tensor(ctx, layer.ffn_norm);
    }

    gguf_write_to_file(ctx, filename, false);
    gguf_free(ctx);
}

static struct train_params get_default_train_params() {
    struct train_params params;
    params.fn_vocab_model          = "models/7B/ggml-model-f16.gguf";
    params.fn_llama2c_output_model = "ak_llama_model.bin";
    params.fn_train_data           = "shakespeare.txt";
    params.fn_checkpoint_in        = "checkpoint.bin";
    params.fn_checkpoint_out       = "checkpoint.bin";
    params.fn_model_out            = "ggml-checkpoint-f32.bin";

    params.seed       =   -1;

    params.n_ctx      =  128;
    params.n_embd     =  256;
    params.n_mult     =  256;
    params.n_head     =    8;
    params.n_layer    =   16;
    params.n_rotmax   =   64;

    params.n_threads  =    6;
    params.n_batch    =    8;
    params.n_examples =    8;
    params.n_predict  = 1024;

    params.print_info_interval    = 1;
    params.print_details_interval = 2;

    params.samples_start_after_nl = false;
    params.use_adam               = true;
    params.use_flash              = false;
    params.use_scratch            = true;

    // only adam
    params.warmup            =  100;
    params.cos_decay_steps   = 1000;
    params.cos_decay_restart = 1.1f;
    params.cos_decay_alpha   = 0.0f;

    params.lbfgs_n_iter      = 16;
    params.adam_n_iter       = 16;
    params.adam_alpha        = 1e-3f;
    params.adam_decay        = 1e-3f;

    params.mem_model_gb    = 2;
    params.mem_compute_gb  = 24;
    params.mem_compute0_gb = 8;
    params.mem_compute1_gb = 2;

    return params;
}

static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help                       show this help message and exit\n");
    fprintf(stderr, "  --copy-vocab-from-model FNAME    path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
    fprintf(stderr, "  --llama2c-model FNAME            [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
    fprintf(stderr, "  --llama2c-output-model FNAME     model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
    fprintf(stderr, "\n");
}

static bool params_parse(int argc, char ** argv, struct train_params * params) {
    bool invalid_param = false;
    bool reqd_param_found = false;
    std::string arg;
    struct train_params default_params = get_default_train_params();
    const std::string arg_prefix = "--";

    for (int i = 1; i < argc; i++) {
        arg = argv[i];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }

        if (arg == "--copy-vocab-from-model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_vocab_model = argv[i];
        } else if (arg == "--llama2c-model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            reqd_param_found = true;
            params->fn_llama2c_model = argv[i];
        } else if (arg == "--llama2c-output-model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_llama2c_output_model = argv[i];
        } else if (arg == "-h" || arg == "--help") {
            print_usage(argc, argv, &default_params);
            exit(0);
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            print_usage(argc, argv, &default_params);
            exit(1);
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        print_usage(argc, argv, &default_params);
        exit(1);
    }
    if (!reqd_param_found){
        fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
        print_usage(argc, argv, &default_params);
        exit(1);
    }

    return true;
}

static std::string basename(const std::string &path) {
    size_t pos = path.find_last_of("/\\");
    if (pos == std::string::npos) {
        return path;
    }
    return path.substr(pos + 1);
}

int main(int argc, char ** argv) {
    common_init();

    struct train_params params = get_default_train_params();
    if (!params_parse(argc, argv, &params)) {
        return 1;
    }

    Config config;
    TransformerWeights weights = {};
    {
        LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
        FILE * file = fopen(params.fn_llama2c_model, "rb");
        if (!file) {
            LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
            return 1;
        }
        // read in the config header
        if (fread(&config, sizeof(Config), 1, file) != 1) {
            LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
            return 1;
        }
        auto shared_weights = config.vocab_size > 0;
        config.vocab_size = abs(config.vocab_size);

        // read in the Transformer weights
        alloc_weights(&weights, &config, shared_weights);
        if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
            LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
            return 1;
        }
        fclose(file);
    }

    struct my_llama_vocab vocab;
    load_vocab(params.fn_vocab_model, &config, &vocab);

    struct my_llama_model model;
    model.hparams.n_vocab   = config.vocab_size; //llama_n_vocab(lctx);
    model.hparams.n_ctx     = params.n_ctx;
    model.hparams.n_embd    = config.dim; //params.n_embd;
    model.hparams.n_ff      = config.hidden_dim;
    model.hparams.n_mult    = 32;//params.n_mult;
    model.hparams.n_head    = config.n_heads; //params.n_head;
    model.hparams.n_head_kv = config.n_kv_heads;
    model.hparams.n_layer   = config.n_layers; //params.n_layer;
    model.hparams.n_rot     = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);

    print_params(&model.hparams);

    struct ggml_init_params lcparams;
    lcparams.mem_size   = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
    lcparams.mem_buffer = NULL;
    lcparams.no_alloc   = false;

    model.ctx = ggml_init(lcparams);

    init_model(&model);
    model.name = basename(params.fn_llama2c_model);
    save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);

    LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);

    ggml_free(model.ctx);
    return 0;
}