File size: 20,949 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#include "llama.h"
#include "common.h"

#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>

#include <stdio.h>
#include <string.h>
#include <climits>
#include <stdexcept>

#if defined(_WIN32)
    #include <windows.h>
    #ifndef PATH_MAX
        #define PATH_MAX MAX_PATH
    #endif
    #include <io.h>
#endif

enum split_operation : uint8_t {
    OP_NONE,
    OP_SPLIT,
    OP_MERGE,
};

enum split_mode : uint8_t {
    MODE_NONE,
    MODE_TENSOR,
    MODE_SIZE,
};

struct split_params {
    split_operation operation = OP_NONE;
    split_mode mode = MODE_NONE;
    size_t n_bytes_split = 0;
    int n_split_tensors = 128;
    std::string input;
    std::string output;
    bool no_tensor_first_split = false;
    bool dry_run = false;
};

static void split_print_usage(const char * executable) {
    const split_params default_params;
    printf("\n");
    printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
    printf("\n");
    printf("Apply a GGUF operation on IN to OUT.");
    printf("\n");
    printf("options:\n");
    printf("  -h, --help              show this help message and exit\n");
    printf("  --version               show version and build info\n");
    printf("  --split                 split GGUF to multiple GGUF (enabled by default)\n");
    printf("  --merge                 merge multiple GGUF to a single GGUF\n");
    printf("  --split-max-tensors     max tensors in each split (default: %d)\n", default_params.n_split_tensors);
    printf("  --split-max-size N(M|G) max size per split\n");
    printf("  --no-tensor-first-split do not add tensors to the first split (disabled by default)\n");
    printf("  --dry-run               only print out a split plan and exit, without writing any new files\n");
    printf("\n");
}

// return convert string, for example "128M" or "4G" to number of bytes
static size_t split_str_to_n_bytes(std::string str) {
    size_t n_bytes = 0;
    int n;
    if (str.back() == 'M') {
        sscanf(str.c_str(), "%d", &n);
        n_bytes = (size_t)n * 1000 * 1000; // megabytes
    } else if (str.back() == 'G') {
        sscanf(str.c_str(), "%d", &n);
        n_bytes = (size_t)n * 1000 * 1000 * 1000; // gigabytes
    } else {
        throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
    }
    if (n <= 0) {
        throw std::invalid_argument("error: size must be a positive value");
    }
    return n_bytes;
}

static void split_params_parse_ex(int argc, const char ** argv, split_params & params) {
    std::string arg;
    const std::string arg_prefix = "--";
    bool invalid_param = false;

    int arg_idx = 1;
    for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
        arg = argv[arg_idx];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }

        bool arg_found = false;
        if (arg == "-h" || arg == "--help") {
            split_print_usage(argv[0]);
            exit(0);
        } else if (arg == "--version") {
            fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
            fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
            exit(0);
        } else if (arg == "--dry-run") {
            arg_found = true;
            params.dry_run = true;
        } else if (arg == "--no-tensor-first-split") {
            arg_found = true;
            params.no_tensor_first_split = true;
        } else if (arg == "--merge") {
            arg_found = true;
            if (params.operation != OP_NONE && params.operation != OP_MERGE) {
                throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
            }
            params.operation = OP_MERGE;
        } else if (arg == "--split") {
            arg_found = true;
            if (params.operation != OP_NONE && params.operation != OP_SPLIT) {
                throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
            }
            params.operation = OP_SPLIT;
        } else if (arg == "--split-max-tensors") {
            if (++arg_idx >= argc) {
                invalid_param = true;
                break;
            }
            arg_found = true;
            if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) {
                throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
            }
            params.mode = MODE_TENSOR;
            params.n_split_tensors = atoi(argv[arg_idx]);
        } else if (arg == "--split-max-size") {
            if (++arg_idx >= argc) {
                invalid_param = true;
                break;
            }
            arg_found = true;
            if (params.mode != MODE_NONE && params.mode != MODE_SIZE) {
                throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
            }
            params.mode = MODE_SIZE;
            params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
        }

        if (!arg_found) {
            throw std::invalid_argument("error: unknown argument: " + arg);
        }
    }

    // the operation is split if not specified
    if (params.operation == OP_NONE) {
        params.operation = OP_SPLIT;
    }
    // the split mode is by tensor if not specified
    if (params.mode == MODE_NONE) {
        params.mode = MODE_TENSOR;
    }

    if (invalid_param) {
        throw std::invalid_argument("error: invalid parameter for argument: " + arg);
    }

    if (argc - arg_idx != 2) {
        throw std::invalid_argument("error: bad arguments");
    }

    params.input = argv[arg_idx++];
    params.output = argv[arg_idx++];
}

static bool split_params_parse(int argc, const char ** argv, split_params & params) {
    bool result = true;
    try {
        split_params_parse_ex(argc, argv, params);
    }
    catch (const std::invalid_argument & ex) {
        fprintf(stderr, "%s\n", ex.what());
        split_print_usage(argv[0]);
        exit(EXIT_FAILURE);
    }
    return result;
}

static void zeros(std::ofstream & file, size_t n) {
    char zero = 0;
    for (size_t i = 0; i < n; ++i) {
        file.write(&zero, 1);
    }
}

struct split_strategy {
    const split_params params;
    std::ifstream & f_input;
    struct gguf_context * ctx_gguf;
    struct ggml_context * ctx_meta = NULL;
    const int n_tensors;

    // one ctx_out per one output file
    std::vector<struct gguf_context *> ctx_outs;

    // temporary buffer for reading in tensor data
    std::vector<uint8_t> read_buf;

    split_strategy(const split_params & params,
            std::ifstream & f_input,
            struct gguf_context * ctx_gguf,
            struct ggml_context * ctx_meta) :
        params(params),
        f_input(f_input),
        ctx_gguf(ctx_gguf),
        ctx_meta(ctx_meta),
        n_tensors(gguf_get_n_tensors(ctx_gguf)) {

        // because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
        int i_split = -1;
        struct gguf_context * ctx_out = NULL;
        auto new_ctx_out = [&](bool allow_no_tensors) {
            i_split++;
            if (ctx_out != NULL) {
                if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) {
                    fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
                    exit(EXIT_FAILURE);
                }
                ctx_outs.push_back(ctx_out);
            }
            ctx_out = gguf_init_empty();
            // Save all metadata in first split only
            if (i_split == 0) {
                gguf_set_kv(ctx_out, ctx_gguf);
            }
            gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
            gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder
            gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
        };

        // initialize ctx_out for the first split
        new_ctx_out(false);

        // skip first split if no_tensor_first_split is set
        if (params.no_tensor_first_split) {
            new_ctx_out(true);
        }

        // process tensors one by one
        size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
        for (int i = 0; i < n_tensors; ++i) {
            struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
            // calculate the "imaginary" size = the current size + next tensor size
            size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
            size_t next_tensors_size = curr_tensors_size + n_bytes;
            if (should_split(i, next_tensors_size)) {
                new_ctx_out(false);
                curr_tensors_size = n_bytes;
            } else {
                curr_tensors_size = next_tensors_size;
            }
            gguf_add_tensor(ctx_out, t);
        }

        // push the last ctx_out
        ctx_outs.push_back(ctx_out);

        // set the correct n_split for all ctx_out
        for (auto & ctx : ctx_outs) {
            gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size());
        }
    }

    ~split_strategy() {
        for (auto & ctx_out : ctx_outs) {
            gguf_free(ctx_out);
        }
    }

    bool should_split(int i_tensor, size_t next_size) {
        if (params.mode == MODE_SIZE) {
            // split by max size per file
            return next_size > params.n_bytes_split;
        } else if (params.mode == MODE_TENSOR) {
            // split by number of tensors per file
            return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
        }
        // should never happen
        GGML_ABORT("invalid mode");
    }

    void print_info() {
        printf("n_split: %ld\n", ctx_outs.size());
        int i_split = 0;
        for (auto & ctx_out : ctx_outs) {
            // re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
            size_t total_size = gguf_get_meta_size(ctx_out);
            for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
                struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i));
                total_size += ggml_nbytes(t);
            }
            total_size = total_size / 1000 / 1000; // convert to megabytes
            printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
            i_split++;
        }
    }

    void write() {
        int i_split = 0;
        int n_split = ctx_outs.size();
        for (auto & ctx_out : ctx_outs) {
            // construct file path
            char split_path[PATH_MAX] = {0};
            llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);

            // open the output file
            printf("Writing file %s ... ", split_path);
            fflush(stdout);
            std::ofstream fout = std::ofstream(split_path, std::ios::binary);
            fout.exceptions(std::ofstream::failbit); // fail fast on write errors

            // write metadata
            std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
            gguf_get_meta_data(ctx_out, data.data());
            fout.write((const char *)data.data(), data.size());

            // write tensors
            for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
                // read tensor meta and prepare buffer
                const char * t_name = gguf_get_tensor_name(ctx_out, i);
                struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
                auto n_bytes = ggml_nbytes(t);
                read_buf.resize(n_bytes);

                // calculate offset
                auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file
                auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);

                // copy tensor from input to output file
                copy_file_to_file(f_input, fout, offset, n_bytes);
                zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
            }

            printf("done\n");
            // close the file
            fout.close();
            i_split++;
        }
    }

    void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) {
        // TODO: detect OS and use copy_file_range() here for better performance
        if (read_buf.size() < len) {
            read_buf.resize(len);
        }
        f_in.seekg(in_offset);
        f_in.read((char *)read_buf.data(), len);
        f_out.write((const char *)read_buf.data(), len);
    }
};

static void gguf_split(const split_params & split_params) {
    struct ggml_context * ctx_meta = NULL;

    struct gguf_init_params params = {
        /*.no_alloc = */ true,
        /*.ctx      = */ &ctx_meta,
    };

    std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
    if (!f_input.is_open()) {
        fprintf(stderr, "%s:  failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
        exit(EXIT_FAILURE);
    }

    auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
    if (!ctx_gguf) {
        fprintf(stderr, "%s:  failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
        exit(EXIT_FAILURE);
    }

    // prepare the strategy
    split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
    int n_split = strategy.ctx_outs.size();
    strategy.print_info();

    if (!split_params.dry_run) {
        // write all output splits
        strategy.write();
    }

    // done, clean up
    gguf_free(ctx_gguf);
    f_input.close();

    fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
            __func__, n_split, strategy.n_tensors);
}

static void gguf_merge(const split_params & split_params) {
    fprintf(stderr, "%s: %s -> %s\n",
            __func__, split_params.input.c_str(),
            split_params.output.c_str());
    int n_split = 1;
    int total_tensors = 0;

    // avoid overwriting existing output file
    if (std::ifstream(split_params.output.c_str())) {
        fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str());
        exit(EXIT_FAILURE);
    }

    std::ofstream fout(split_params.output.c_str(), std::ios::binary);
    fout.exceptions(std::ofstream::failbit); // fail fast on write errors

    auto * ctx_out = gguf_init_empty();

    std::vector<uint8_t> read_data;
    std::vector<ggml_context *> ctx_metas;
    std::vector<gguf_context *> ctx_ggufs;

    char split_path[PATH_MAX] = {0};
    strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
    char split_prefix[PATH_MAX] = {0};

    // First pass to find KV and tensors metadata
    for (int i_split = 0; i_split < n_split; i_split++) {
        struct ggml_context * ctx_meta = NULL;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &ctx_meta,
        };

        if (i_split > 0) {
            llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
        }
        fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);

        auto * ctx_gguf = gguf_init_from_file(split_path, params);
        if (!ctx_gguf) {
            fprintf(stderr, "\n%s:  failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
            exit(EXIT_FAILURE);
        }
        ctx_ggufs.push_back(ctx_gguf);
        ctx_metas.push_back(ctx_meta);

        if (i_split == 0) {
            auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
            if (key_n_split < 0) {
                fprintf(stderr,
                        "\n%s: input file does not contain %s metadata\n",
                        __func__,
                        LLM_KV_SPLIT_COUNT);
                gguf_free(ctx_gguf);
                ggml_free(ctx_meta);
                gguf_free(ctx_out);
                fout.close();
                exit(EXIT_FAILURE);
            }

            n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
            if (n_split < 1) {
                fprintf(stderr,
                        "\n%s: input file does not contain a valid split count %d\n",
                        __func__,
                        n_split);
                gguf_free(ctx_gguf);
                ggml_free(ctx_meta);
                gguf_free(ctx_out);
                fout.close();
                exit(EXIT_FAILURE);
            }

            // Verify the file naming and extract split_prefix
            if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
                fprintf(stderr, "\n%s: unexpected input file name: %s"
                                " i_split=%d"
                                " n_split=%d\n", __func__,
                        split_path, i_split, n_split);
                gguf_free(ctx_gguf);
                ggml_free(ctx_meta);
                gguf_free(ctx_out);
                fout.close();
                exit(EXIT_FAILURE);
            }

            // Do not trigger merge if we try to merge again the output
            gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);

            // Set metadata from the first split
            gguf_set_kv(ctx_out, ctx_gguf);
        }

        auto n_tensors = gguf_get_n_tensors(ctx_gguf);
        for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
            const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
            struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
            gguf_add_tensor(ctx_out, t);
        }
        total_tensors += n_tensors;

        fprintf(stderr, "\033[3Ddone\n");
    }

    // placeholder for the meta data
    {
        auto meta_size = gguf_get_meta_size(ctx_out);
        ::zeros(fout, meta_size);
    }

    // Write tensors data
    for (int i_split = 0; i_split < n_split; i_split++) {
        llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
        std::ifstream f_input(split_path, std::ios::binary);
        if (!f_input.is_open()) {
            fprintf(stderr, "%s:  failed to open input GGUF from %s\n", __func__, split_path);
            for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
                gguf_free(ctx_ggufs[i]);
                ggml_free(ctx_metas[i]);
            }
            gguf_free(ctx_out);
            fout.close();
            exit(EXIT_FAILURE);
        }
        fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);

        auto * ctx_gguf = ctx_ggufs[i_split];
        auto * ctx_meta = ctx_metas[i_split];

        auto n_tensors = gguf_get_n_tensors(ctx_gguf);
        for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
            const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
            struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);

            auto n_bytes = ggml_nbytes(t);

            if (read_data.size() < n_bytes) {
                read_data.resize(n_bytes);
            }

            auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
            f_input.seekg(offset);
            f_input.read((char *)read_data.data(), n_bytes);

            // write tensor data + padding
            fout.write((const char *)read_data.data(), n_bytes);
            zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
        }

        gguf_free(ctx_gguf);
        ggml_free(ctx_meta);
        f_input.close();
        fprintf(stderr, "\033[3Ddone\n");
    }

    {
        // go back to beginning of file and write the updated metadata
        fout.seekp(0);
        std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
        gguf_get_meta_data(ctx_out, data.data());
        fout.write((const char *)data.data(), data.size());

        fout.close();
        gguf_free(ctx_out);
    }

    fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
            __func__, split_params.output.c_str(), n_split, total_tensors);
}

int main(int argc, const char ** argv) {
    split_params params;
    split_params_parse(argc, argv, params);

    switch (params.operation) {
        case OP_SPLIT: gguf_split(params);
            break;
        case OP_MERGE: gguf_merge(params);
            break;
        default: split_print_usage(argv[0]);
            exit(EXIT_FAILURE);
    }

    return 0;
}