Spaces:
Runtime error
Runtime error
// Various helper functions and utilities | |
struct common_lora_adapter_info { | |
std::string path; | |
float scale; | |
}; | |
struct common_lora_adapter_container : common_lora_adapter_info { | |
struct llama_lora_adapter * adapter; | |
}; | |
// build info | |
extern int LLAMA_BUILD_NUMBER; | |
extern char const * LLAMA_COMMIT; | |
extern char const * LLAMA_COMPILER; | |
extern char const * LLAMA_BUILD_TARGET; | |
struct common_control_vector_load_info; | |
// | |
// CPU utils | |
// | |
struct cpu_params { | |
int n_threads = -1; | |
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask. | |
bool mask_valid = false; // Default: any CPU | |
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime) | |
bool strict_cpu = false; // Use strict CPU placement | |
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling) | |
}; | |
int32_t cpu_get_num_physical_cores(); | |
int32_t cpu_get_num_math(); | |
// | |
// Common params | |
// | |
enum llama_example { | |
LLAMA_EXAMPLE_COMMON, | |
LLAMA_EXAMPLE_SPECULATIVE, | |
LLAMA_EXAMPLE_MAIN, | |
LLAMA_EXAMPLE_INFILL, | |
LLAMA_EXAMPLE_EMBEDDING, | |
LLAMA_EXAMPLE_PERPLEXITY, | |
LLAMA_EXAMPLE_RETRIEVAL, | |
LLAMA_EXAMPLE_PASSKEY, | |
LLAMA_EXAMPLE_IMATRIX, | |
LLAMA_EXAMPLE_BENCH, | |
LLAMA_EXAMPLE_SERVER, | |
LLAMA_EXAMPLE_CVECTOR_GENERATOR, | |
LLAMA_EXAMPLE_EXPORT_LORA, | |
LLAMA_EXAMPLE_LLAVA, | |
LLAMA_EXAMPLE_LOOKUP, | |
LLAMA_EXAMPLE_PARALLEL, | |
LLAMA_EXAMPLE_COUNT, | |
}; | |
enum common_sampler_type { | |
COMMON_SAMPLER_TYPE_NONE = 0, | |
COMMON_SAMPLER_TYPE_DRY = 1, | |
COMMON_SAMPLER_TYPE_TOP_K = 2, | |
COMMON_SAMPLER_TYPE_TOP_P = 3, | |
COMMON_SAMPLER_TYPE_MIN_P = 4, | |
//COMMON_SAMPLER_TYPE_TFS_Z = 5, | |
COMMON_SAMPLER_TYPE_TYPICAL_P = 6, | |
COMMON_SAMPLER_TYPE_TEMPERATURE = 7, | |
COMMON_SAMPLER_TYPE_XTC = 8, | |
COMMON_SAMPLER_TYPE_INFILL = 9, | |
}; | |
// dimensionality reduction methods, used by cvector-generator | |
enum dimre_method { | |
DIMRE_METHOD_PCA, | |
DIMRE_METHOD_MEAN, | |
}; | |
// sampler parameters | |
struct common_sampler_params { | |
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler | |
int32_t n_prev = 64; // number of previous tokens to remember | |
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. | |
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens | |
int32_t top_k = 40; // <= 0 to use vocab size | |
float top_p = 0.95f; // 1.0 = disabled | |
float min_p = 0.05f; // 0.0 = disabled | |
float xtc_probability = 0.00f; // 0.0 = disabled | |
float xtc_threshold = 0.10f; // > 0.5 disables XTC | |
float typ_p = 1.00f; // typical_p, 1.0 = disabled | |
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities | |
float dynatemp_range = 0.00f; // 0.0 = disabled | |
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler | |
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) | |
float penalty_repeat = 1.00f; // 1.0 = disabled | |
float penalty_freq = 0.00f; // 0.0 = disabled | |
float penalty_present = 0.00f; // 0.0 = disabled | |
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition: | |
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length) | |
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty | |
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size) | |
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 | |
float mirostat_tau = 5.00f; // target entropy | |
float mirostat_eta = 0.10f; // learning rate | |
bool penalize_nl = false; // consider newlines as a repeatable token | |
bool ignore_eos = false; | |
bool no_perf = false; // disable performance metrics | |
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY | |
std::vector<enum common_sampler_type> samplers = { | |
COMMON_SAMPLER_TYPE_DRY, | |
COMMON_SAMPLER_TYPE_TOP_K, | |
COMMON_SAMPLER_TYPE_TYPICAL_P, | |
COMMON_SAMPLER_TYPE_TOP_P, | |
COMMON_SAMPLER_TYPE_MIN_P, | |
COMMON_SAMPLER_TYPE_XTC, | |
COMMON_SAMPLER_TYPE_TEMPERATURE, | |
}; | |
std::string grammar; // optional BNF-like grammar to constrain sampling | |
std::vector<llama_logit_bias> logit_bias; // logit biases to apply | |
// print the parameters into a string | |
std::string print() const; | |
}; | |
struct common_params { | |
int32_t n_predict = -1; // new tokens to predict | |
int32_t n_ctx = 4096; // context size | |
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) | |
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) | |
int32_t n_keep = 0; // number of tokens to keep from initial prompt | |
int32_t n_draft = 5; // number of tokens to draft during speculative decoding | |
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) | |
int32_t n_parallel = 1; // number of parallel sequences to decode | |
int32_t n_sequences = 1; // number of sequences to decode | |
float p_split = 0.1f; // speculative decoding split probability | |
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) | |
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) | |
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors | |
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs | |
int32_t grp_attn_n = 1; // group-attention factor | |
int32_t grp_attn_w = 512; // group-attention width | |
int32_t n_print = -1; // print token count every n tokens (-1 = disabled) | |
float rope_freq_base = 0.0f; // RoPE base frequency | |
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor | |
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor | |
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor | |
float yarn_beta_fast = 32.0f; // YaRN low correction dim | |
float yarn_beta_slow = 1.0f; // YaRN high correction dim | |
int32_t yarn_orig_ctx = 0; // YaRN original context length | |
float defrag_thold = -1.0f; // KV cache defragmentation threshold | |
struct cpu_params cpuparams; | |
struct cpu_params cpuparams_batch; | |
struct cpu_params draft_cpuparams; | |
struct cpu_params draft_cpuparams_batch; | |
ggml_backend_sched_eval_callback cb_eval = nullptr; | |
void * cb_eval_user_data = nullptr; | |
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; | |
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs | |
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; | |
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings | |
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings | |
struct common_sampler_params sparams; | |
std::string model = ""; // model path // NOLINT | |
std::string model_draft = ""; // draft model for speculative decoding // NOLINT | |
std::string model_alias = "unknown"; // model alias // NOLINT | |
std::string model_url = ""; // model url to download // NOLINT | |
std::string hf_token = ""; // HF token // NOLINT | |
std::string hf_repo = ""; // HF repo // NOLINT | |
std::string hf_file = ""; // HF file // NOLINT | |
std::string prompt = ""; // NOLINT | |
std::string prompt_file = ""; // store the external prompt file name // NOLINT | |
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT | |
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT | |
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT | |
std::string logdir = ""; // directory in which to save YAML log files // NOLINT | |
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT | |
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT | |
std::string logits_file = ""; // file for saving *all* logits // NOLINT | |
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT | |
std::vector<std::string> in_files; // all input files | |
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) | |
std::vector<llama_model_kv_override> kv_overrides; | |
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply) | |
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale | |
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale | |
int32_t verbosity = 0; | |
int32_t control_vector_layer_start = -1; // layer range for control vector | |
int32_t control_vector_layer_end = -1; // layer range for control vector | |
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. | |
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line | |
// (which is more convenient to use for plotting) | |
// | |
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt | |
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score | |
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt | |
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed | |
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt | |
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed | |
bool kl_divergence = false; // compute KL divergence | |
bool usage = false; // print usage | |
bool use_color = false; // use color to distinguish generations and inputs | |
bool special = false; // enable special token output | |
bool interactive = false; // interactive mode | |
bool interactive_first = false; // wait for user input immediately | |
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) | |
bool prompt_cache_all = false; // save user input and generations to prompt cache | |
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it | |
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\" | |
bool multiline_input = false; // reverse the usage of `\` | |
bool simple_io = false; // improves compatibility with subprocesses and limited consoles | |
bool cont_batching = true; // insert new sequences for decoding on-the-fly | |
bool flash_attn = false; // flash attention | |
bool no_perf = false; // disable performance metrics | |
bool ctx_shift = true; // context shift on inifinite text generation | |
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix | |
bool logits_all = false; // return logits for all tokens in the batch | |
bool use_mmap = true; // use mmap for faster loads | |
bool use_mlock = false; // use mlock to keep model in memory | |
bool verbose_prompt = false; // print prompt tokens before generation | |
bool display_prompt = true; // print prompt before generation | |
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes | |
bool no_kv_offload = false; // disable KV offloading | |
bool warmup = true; // warmup run | |
bool check_tensors = false; // validate tensor data | |
std::string cache_type_k = "f16"; // KV cache data type for the K | |
std::string cache_type_v = "f16"; // KV cache data type for the V | |
// multimodal models (see examples/llava) | |
std::string mmproj = ""; // path to multimodal projector // NOLINT | |
std::vector<std::string> image; // path to image file(s) | |
// embedding | |
bool embedding = false; // get only sentence embedding | |
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm) | |
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix | |
std::string embd_sep = "\n"; // separator of embeddings | |
bool reranking = false; // enable reranking support on server | |
// server params | |
int32_t port = 8080; // server listens on this network port | |
int32_t timeout_read = 600; // http read timeout in seconds | |
int32_t timeout_write = timeout_read; // http write timeout in seconds | |
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool) | |
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting | |
std::string hostname = "127.0.0.1"; | |
std::string public_path = ""; // NOLINT | |
std::string chat_template = ""; // NOLINT | |
bool enable_chat_template = true; | |
std::vector<std::string> api_keys; | |
std::string ssl_file_key = ""; // NOLINT | |
std::string ssl_file_cert = ""; // NOLINT | |
// "advanced" endpoints are disabled by default for better security | |
bool webui = true; | |
bool endpoint_slots = false; | |
bool endpoint_props = false; // only control POST requests, not GET | |
bool endpoint_metrics = false; | |
bool log_json = false; | |
std::string slot_save_path; | |
float slot_prompt_similarity = 0.5f; | |
// batched-bench params | |
bool is_pp_shared = false; | |
std::vector<int32_t> n_pp; | |
std::vector<int32_t> n_tg; | |
std::vector<int32_t> n_pl; | |
// retrieval params | |
std::vector<std::string> context_files; // context files to embed | |
int32_t chunk_size = 64; // chunk size for context embedding | |
std::string chunk_separator = "\n"; // chunk separator for context embedding | |
// passkey params | |
int32_t n_junk = 250; // number of times to repeat the junk text | |
int32_t i_pos = -1; // position of the passkey in the junk text | |
// imatrix params | |
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file | |
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations | |
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations | |
int32_t i_chunk = 0; // start processing from this chunk | |
bool process_output = false; // collect data for the output tensor | |
bool compute_ppl = true; // whether to compute perplexity | |
// cvector-generator params | |
int n_pca_batch = 100; | |
int n_pca_iterations = 1000; | |
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA; | |
std::string cvector_outfile = "control_vector.gguf"; | |
std::string cvector_positive_file = "examples/cvector-generator/positive.txt"; | |
std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; | |
bool spm_infill = false; // suffix/prefix/middle pattern for infill | |
std::string lora_outfile = "ggml-lora-merged-f16.gguf"; | |
// batched-bench params | |
bool batched_bench_output_jsonl = false; | |
}; | |
// call once at the start of a program if it uses libcommon | |
// initializes the logging system and prints info about the build | |
void common_init(); | |
std::string common_params_get_system_info(const common_params & params); | |
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]); | |
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]); | |
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr); | |
bool set_process_priority(enum ggml_sched_priority prio); | |
// | |
// String utils | |
// | |
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) | |
std::string string_format(const char * fmt, ...); | |
std::string string_strip(const std::string & str); | |
std::string string_get_sortable_timestamp(); | |
void string_replace_all(std::string & s, const std::string & search, const std::string & replace); | |
template<class T> | |
static std::vector<T> string_split(const std::string & str, char delim) { | |
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string"); | |
std::vector<T> values; | |
std::istringstream str_stream(str); | |
std::string token; | |
while (std::getline(str_stream, token, delim)) { | |
T value; | |
std::istringstream token_stream(token); | |
token_stream >> value; | |
values.push_back(value); | |
} | |
return values; | |
} | |
template<> | |
std::vector<std::string> string_split<std::string>(const std::string & input, char separator) | |
{ | |
std::vector<std::string> parts; | |
size_t begin_pos = 0; | |
size_t separator_pos = input.find(separator); | |
while (separator_pos != std::string::npos) { | |
std::string part = input.substr(begin_pos, separator_pos - begin_pos); | |
parts.emplace_back(part); | |
begin_pos = separator_pos + 1; | |
separator_pos = input.find(separator, begin_pos); | |
} | |
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos)); | |
return parts; | |
} | |
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); | |
void string_process_escapes(std::string & input); | |
std::string string_from(bool value); | |
std::string string_from(const std::vector<int> & values); | |
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens); | |
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch); | |
// | |
// Filesystem utils | |
// | |
bool fs_validate_filename(const std::string & filename); | |
bool fs_create_directory_with_parents(const std::string & path); | |
std::string fs_get_cache_directory(); | |
std::string fs_get_cache_file(const std::string & filename); | |
// | |
// Model utils | |
// | |
struct common_init_result { | |
struct llama_model * model = nullptr; | |
struct llama_context * context = nullptr; | |
std::vector<common_lora_adapter_container> lora_adapters; | |
}; | |
struct common_init_result common_init_from_params(common_params & params); | |
struct llama_model_params common_model_params_to_llama (const common_params & params); | |
struct llama_context_params common_context_params_to_llama(const common_params & params); | |
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params); | |
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params); | |
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params); | |
// clear LoRA adapters from context, then apply new list of adapters | |
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters); | |
// Batch utils | |
void common_batch_clear(struct llama_batch & batch); | |
void common_batch_add( | |
struct llama_batch & batch, | |
llama_token id, | |
llama_pos pos, | |
const std::vector<llama_seq_id> & seq_ids, | |
bool logits); | |
// | |
// Vocab utils | |
// | |
// tokenizes a string into a vector of tokens | |
// should work similar to Python's `tokenizer.encode` | |
std::vector<llama_token> common_tokenize( | |
const struct llama_context * ctx, | |
const std::string & text, | |
bool add_special, | |
bool parse_special = false); | |
std::vector<llama_token> common_tokenize( | |
const struct llama_model * model, | |
const std::string & text, | |
bool add_special, | |
bool parse_special = false); | |
// tokenizes a token into a piece, optionally renders special/control tokens | |
// should work similar to Python's `tokenizer.id_to_piece` | |
std::string common_token_to_piece( | |
const struct llama_context * ctx, | |
llama_token token, | |
bool special = true); | |
// detokenizes a vector of tokens into a string | |
// should work similar to Python's `tokenizer.decode` | |
// optionally renders special/control tokens | |
std::string common_detokenize( | |
llama_context * ctx, | |
const std::vector<llama_token> & tokens, | |
bool special = true); | |
// | |
// Chat template utils | |
// | |
// same with llama_chat_message, but uses std::string | |
struct common_chat_msg { | |
std::string role; | |
std::string content; | |
}; | |
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid | |
bool common_chat_verify_template(const std::string & tmpl); | |
// CPP wrapper for llama_chat_apply_template | |
// If the built-in template is not supported, we default to chatml | |
// If the custom "tmpl" is not supported, we throw an error | |
std::string common_chat_apply_template(const struct llama_model * model, | |
const std::string & tmpl, | |
const std::vector<common_chat_msg> & chat, | |
bool add_ass); | |
// Format single message, while taking into account the position of that message in chat history | |
std::string common_chat_format_single(const struct llama_model * model, | |
const std::string & tmpl, | |
const std::vector<common_chat_msg> & past_msg, | |
const common_chat_msg & new_msg, | |
bool add_ass); | |
// Returns an example of formatted chat | |
std::string common_chat_format_example(const struct llama_model * model, | |
const std::string & tmpl); | |
// | |
// KV cache utils | |
// | |
// Dump the KV cache view with the number of sequences per cell. | |
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80); | |
// Dump the KV cache view showing individual sequences in each cell (long output). | |
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40); | |
// | |
// Embedding utils | |
// | |
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2); | |
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n); | |
// | |
// Control vector utils | |
// | |
struct common_control_vector_data { | |
int n_embd; | |
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd | |
std::vector<float> data; | |
}; | |
struct common_control_vector_load_info { | |
float strength; | |
std::string fname; | |
}; | |
// Load control vectors, scale each by strength, and add them together. | |
// On error, returns {-1, empty} | |
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos); | |
// | |
// Split utils | |
// | |
static const char * const LLM_KV_SPLIT_NO = "split.no"; | |
static const char * const LLM_KV_SPLIT_COUNT = "split.count"; | |
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; | |
// | |
// YAML utils | |
// | |
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data); | |
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data); | |
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data); | |
void yaml_dump_non_result_info( | |
FILE * stream, const common_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc); | |