File size: 5,898 Bytes
43a08bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
### Create file named dataset.py
### Paste 
# coding=utf-8
import json
import os
from pathlib import Path
import datasets
from PIL import Image
import pandas as pd

logger = datasets.logging.get_logger(__name__)
_CITATION = """{}"""
_DESCRIPTION = """Discharge Summary"""


def load_image(image_path):
    image = Image.open(image_path)
    w, h = image.size
    return image, (w, h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]


class SroieConfig(datasets.BuilderConfig):
    """BuilderConfig for SROIE"""
    def __init__(self, **kwargs):
        """BuilderConfig for SROIE.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SroieConfig, self).__init__(**kwargs)


class Sroie(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        SroieConfig(name="discharge", version=datasets.Version("1.0.0"), description="Discharge summary dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "words": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=['others',
                                    'produttore_key',
                                    'produttore_value',
                                    'cliente_key',
                                    'cliente_value',
                                    'unitloc_key',
                                    'unitloc_value',
                                    'operatore_key',
                                    'operatore_value',
                                    'referente_key',
                                    'referente_value',
                                    'cfproduttore_key',
                                    'cfproduttore_value',
                                    'telefono_key',
                                    'telefono_value',
                                    'emailcliente_key',
                                    'emailcliente_value',
                                    'datarichiesta_key',
                                    'datarichiesta_value',
                                    'orariorichiesta_key',
                                    'orariorichiesta_value',
                                    'emailproduttore_key',
                                    'emailproduttore_value',
                                    'mattina_key',
                                    'mattina_value',
                                    'pomeriggio_key',
                                    'pomeriggio_value',
                                    'cer_key',
                                    'cer_value',
                                    'descrizione_key',
                                    'descrizione_value',
                                    'sf_key',
                                    'sf_value',
                                    'classpericolo_key',
                                    'classpericolo_value',
                                    'destino_key',
                                    'destino_value',
                                    'confezionamento_key',
                                    'confezionamento_value',
                                    'destinazione_key',
                                    'destinazione_value'
                                    ]
                            )
                    ),
                    #"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
                    "image_path": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            citation=_CITATION,
            homepage="",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        """Uses local files located with data_dir"""
        #downloaded_file = dl_manager.download_and_extract(_URLS)
        # move files from the second URL together with files from the first one.
        dest = Path('dataset')

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"}
            ),
        ]

    def _generate_examples(self, filepath):

        logger.info("⏳ Generating examples from = %s", filepath)
        ann_dir = os.path.join(filepath, "annotation_dir")
        img_dir = os.path.join(filepath, "img_dir")

        for guid, fname in enumerate(sorted(os.listdir(img_dir))):

            name, ext = os.path.splitext(fname)
            file_path = os.path.join(ann_dir, name + ".csv")


            df = pd.read_csv(file_path)

            image_path = os.path.join(img_dir, fname)

            image, size = load_image(image_path)

            boxes = [[xmin, ymin, xmax, ymax] for xmin, ymin, xmax, ymax in zip(df['left'],df['top'],df['left']+df['width'],df['top']+df['height'])]
            text = [i for i in df['text']]
            label = [i for i in df['label']]

            boxes = [normalize_bbox(box, size) for box in boxes]

            print(image_path)
            for i in boxes:
              for j in i:
                if j>1000:
                  print(j)
                  pass

            yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}