DataWizard9742
commited on
Commit
•
3e96f2e
1
Parent(s):
ffb8389
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# importing the libraries
|
2 |
+
import pickle
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import sklearn
|
6 |
+
import numpy
|
7 |
+
|
8 |
+
# calling our pickle file
|
9 |
+
model = pickle.load(open("model-3.pkl", "rb"))
|
10 |
+
|
11 |
+
# creating a title for website
|
12 |
+
st.title("Customer Churn Prediction for Banks")
|
13 |
+
|
14 |
+
min_max_values = {
|
15 |
+
'credit_score': {'min': 350, 'max': 850},
|
16 |
+
'age': {'min': 18, 'max': 92},
|
17 |
+
'tenure': {'min': 0, 'max': 20},
|
18 |
+
'balance': {'min': 0, 'max': 250000},
|
19 |
+
'num_of_products': {'min': 1, 'max': 4},
|
20 |
+
'estimated_salary': {'min': 10000, 'max': 200000}
|
21 |
+
}
|
22 |
+
def min_max_scale(value, feature_name):
|
23 |
+
min_val = min_max_values[feature_name]['min']
|
24 |
+
max_val = min_max_values[feature_name]['max']
|
25 |
+
return (value - min_val) / (max_val - min_val)
|
26 |
+
|
27 |
+
credit_score = min_max_scale(
|
28 |
+
st.number_input("Credit Score:", min_value=350, max_value=850, help="Enter a value between 350 and 850"),
|
29 |
+
'credit_score'
|
30 |
+
)
|
31 |
+
|
32 |
+
gender = st.number_input("Gender (1 for Male, 0 for Female):", min_value=0, max_value=1)
|
33 |
+
age = min_max_scale(
|
34 |
+
st.number_input("Age:", min_value=18, max_value=92),
|
35 |
+
'age'
|
36 |
+
)
|
37 |
+
tenure = min_max_scale(
|
38 |
+
st.number_input("Tenure (years):", min_value=0, max_value=20),
|
39 |
+
'tenure'
|
40 |
+
)
|
41 |
+
balance = min_max_scale(
|
42 |
+
st.number_input("Account Balance:", help="Enter your account balance"),
|
43 |
+
'balance'
|
44 |
+
)
|
45 |
+
num_of_products = min_max_scale(
|
46 |
+
st.number_input("Number of Products:", min_value=1, max_value=4),
|
47 |
+
'num_of_products'
|
48 |
+
)
|
49 |
+
has_credit_card = st.number_input("Do you have a Credit Card? (1 for Yes, 0 for No)")
|
50 |
+
is_active_member = st.number_input("Are you an Active Member? (1 for Yes, 0 for No)")
|
51 |
+
estimated_salary = min_max_scale(
|
52 |
+
st.number_input("Estimated Salary:", help="Enter your estimated annual salary"),
|
53 |
+
'estimated_salary'
|
54 |
+
)
|
55 |
+
|
56 |
+
country_options = {"France": 1, "Spain": 2, "Germany": 3}
|
57 |
+
country = st.radio("Choose your country:", list(country_options.keys()))
|
58 |
+
country_code = country_options[country]
|
59 |
+
|
60 |
+
user_input_scaled = pd.DataFrame([[
|
61 |
+
credit_score, gender, age, tenure, balance, num_of_products,
|
62 |
+
has_credit_card, is_active_member, estimated_salary, country_code
|
63 |
+
]])
|
64 |
+
|
65 |
+
if st.button("Predict Churn"):
|
66 |
+
prediction = model.predict(user_input_scaled)[0]
|
67 |
+
message = "The customer is most likely to churn." if prediction == 1 else "The customer is not likely to churn."
|
68 |
+
st.write(message)
|