DataWizard9742 commited on
Commit
e4608fe
1 Parent(s): 40bfa99

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pickle
4
+ from sklearn.preprocessing import StandardScaler
5
+
6
+ model = pickle.load(open("model-2.pkl","rb"))
7
+
8
+ def StandardScalerInput(user_input):
9
+ scaler = StandardScaler()
10
+ scaled_input = scaler.fit_transform(np.array(user_input).reshape(1,-1))
11
+ return scaled_input
12
+
13
+ st.title("CANCER DETECTION APPLICATION")
14
+
15
+ radius_mean = st.number_input('radius_mean', value=0.0)
16
+ texture_mean = st.number_input('texture_mean', value=0.0)
17
+ perimeter_mean = st.number_input('perimeter_mean', value=0.0)
18
+ area_mean = st.number_input('area_mean', value=0.0)
19
+ smoothness_mean = st.number_input('smoothness_mean', value=0.0)
20
+ compactness_mean = st.number_input('compactness_mean', value=0.0)
21
+ concavity_mean = st.number_input('concavity_mean', value=0.0)
22
+ concave_points_mean = st.number_input('concave points_mean', value=0.0)
23
+ symmetry_mean = st.number_input('symmetry_mean', value=0.0)
24
+ fractal_dimension_mean = st.number_input('fractal_dimension_mean', value=0.0)
25
+ radius_se = st.number_input('radius_se', value=0.0)
26
+ texture_se = st.number_input('texture_se', value=0.0)
27
+ perimeter_se = st.number_input('perimeter_se', value=0.0)
28
+ area_se = st.number_input('area_se', value=0.0)
29
+ smoothness_se = st.number_input('smoothness_se', value=0.0)
30
+ compactness_se = st.number_input('compactness_se', value=0.0)
31
+ concavity_se = st.number_input('concavity_se', value=0.0)
32
+ concave_points_se = st.number_input('concave points_se', value=0.0)
33
+ symmetry_se = st.number_input('symmetry_se', value=0.0)
34
+ fractal_dimension_se = st.number_input('fractal_dimension_se', value=0.0)
35
+ radius_worst = st.number_input('radius_worst', value=0.0)
36
+ texture_worst = st.number_input('texture_worst', value=0.0)
37
+ perimeter_worst = st.number_input('perimeter_worst', value=0.0)
38
+ area_worst = st.number_input('area_worst', value=0.0)
39
+ smoothness_worst = st.number_input('smoothness_worst', value=0.0)
40
+ compactness_worst = st.number_input('compactness_worst', value=0.0)
41
+ concavity_worst = st.number_input('concavity_worst', value=0.0)
42
+ concave_points_worst = st.number_input('concave points_worst', value=0.0)
43
+ symmetry_worst = st.number_input('symmetry_worst', value=0.0)
44
+ fractal_dimension_worst = st.number_input('fractal_dimension_worst', value=0.0)
45
+
46
+ user_input = [
47
+ radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean,
48
+ compactness_mean, concavity_mean, concave_points_mean, symmetry_mean,
49
+ fractal_dimension_mean, radius_se, texture_se, perimeter_se, area_se,
50
+ smoothness_se, compactness_se, concavity_se, concave_points_se, symmetry_se,
51
+ fractal_dimension_se, radius_worst, texture_worst, perimeter_worst, area_worst,
52
+ smoothness_worst, compactness_worst, concavity_worst, concave_points_worst,
53
+ symmetry_worst, fractal_dimension_worst
54
+ ]
55
+
56
+ if st.button("PREDICT"):
57
+ standardized_input = StandardScalerInput(user_input)
58
+ prediction = model.predict(standardized_input)
59
+
60
+ st.write("PREDICTION: ", 'CANCER DETECED' if prediction[0]=='M' else 'No Cancer Detected')