DataWizard9742 commited on
Commit
189e5d0
1 Parent(s): 63ecfe0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pickle
3
+ import re
4
+ import nltk
5
+ from pypdf import PdfReader
6
+
7
+ nltk.download('punkt')
8
+ nltk.download('stopwords')
9
+
10
+ model = pickle.load(open('model.pkl','rb'))
11
+ tfidfd = pickle.load(open('tfidf.pkl','rb'))
12
+
13
+ def clean_resume(resume_text):
14
+ clean_text = re.sub('http\S+\s*', ' ', resume_text)
15
+ clean_text = re.sub('RT|cc', ' ', clean_text)
16
+ clean_text = re.sub('#\S+', '', clean_text)
17
+ clean_text = re.sub('@\S+', ' ', clean_text)
18
+ clean_text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', clean_text)
19
+ return clean_text
20
+ def main():
21
+ st.title("Resume Screening App")
22
+ uploaded_file = st.file_uploader('Upload Your Resume Here', type=['txt','pdf'])
23
+
24
+ if uploaded_file is not None:
25
+ try:
26
+ reader = PdfReader(uploaded_file)
27
+ page = reader.pages[0]
28
+ text = page.extract_text()
29
+ except :
30
+ st.write("sorry file cannot be read")
31
+
32
+ cleaned_resume = clean_resume(text)
33
+ input_features = tfidfd.transform([cleaned_resume])
34
+ prediction_id = model.predict(input_features)[0]
35
+
36
+ # Map category ID to category name
37
+ category_mapping = {
38
+ 15: "Java Developer",
39
+ 23: "Testing",
40
+ 8: "DevOps Engineer",
41
+ 20: "Python Developer",
42
+ 24: "Web Designing",
43
+ 12: "HR",
44
+ 13: "Hadoop",
45
+ 3: "Blockchain",
46
+ 10: "ETL Developer",
47
+ 18: "Operations Manager",
48
+ 6: "Data Science",
49
+ 22: "Sales",
50
+ 16: "Mechanical Engineer",
51
+ 1: "Arts",
52
+ 7: "Database",
53
+ 11: "Electrical Engineering",
54
+ 14: "Health and fitness",
55
+ 19: "PMO",
56
+ 4: "Business Analyst",
57
+ 9: "DotNet Developer",
58
+ 2: "Automation Testing",
59
+ 17: "Network Security Engineer",
60
+ 21: "SAP Developer",
61
+ 5: "Civil Engineer",
62
+ 0: "Advocate",
63
+ }
64
+
65
+ category_name = category_mapping.get(prediction_id)
66
+ st.write("The Predicted Category for your Resume is :", category_name)
67
+
68
+
69
+
70
+ # python main
71
+ if __name__ == "__main__":
72
+ main()