import streamlit as st import pickle import re import nltk from pypdf import PdfReader nltk.download('punkt') nltk.download('stopwords') model = pickle.load(open('model.pkl','rb')) tfidfd = pickle.load(open('tfidf.pkl','rb')) def clean_resume(resume_text): clean_text = re.sub('http\S+\s*', ' ', resume_text) clean_text = re.sub('RT|cc', ' ', clean_text) clean_text = re.sub('#\S+', '', clean_text) clean_text = re.sub('@\S+', ' ', clean_text) clean_text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', clean_text) return clean_text def main(): st.title("Resume Screening App") uploaded_file = st.file_uploader('Upload Your Resume Here', type=['txt','pdf']) if uploaded_file is not None: try: reader = PdfReader(uploaded_file) page = reader.pages[0] text = page.extract_text() except : st.write("sorry file cannot be read") cleaned_resume = clean_resume(text) input_features = tfidfd.transform([cleaned_resume]) prediction_id = model.predict(input_features)[0] # Map category ID to category name category_mapping = { 15: "Java Developer", 23: "Testing", 8: "DevOps Engineer", 20: "Python Developer", 24: "Web Designing", 12: "HR", 13: "Hadoop", 3: "Blockchain", 10: "ETL Developer", 18: "Operations Manager", 6: "Data Science", 22: "Sales", 16: "Mechanical Engineer", 1: "Arts", 7: "Database", 11: "Electrical Engineering", 14: "Health and fitness", 19: "PMO", 4: "Business Analyst", 9: "DotNet Developer", 2: "Automation Testing", 17: "Network Security Engineer", 21: "SAP Developer", 5: "Civil Engineer", 0: "Advocate", } category_name = category_mapping.get(prediction_id) st.write("The Predicted Category for your Resume is :", category_name) # python main if __name__ == "__main__": main()