Spaces:
Sleeping
Sleeping
change replicate to deployment instead of model
Browse files
app.py
CHANGED
@@ -1,25 +1,12 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
-
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
|
9 |
-
if torch.cuda.is_available():
|
10 |
-
torch_dtype = torch.float16
|
11 |
-
else:
|
12 |
-
torch_dtype = torch.float32
|
13 |
-
|
14 |
-
####
|
15 |
-
|
16 |
import gradio as gr
|
17 |
import replicate
|
18 |
|
|
|
|
|
19 |
|
20 |
-
def generate_image(lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
|
21 |
-
|
22 |
-
|
23 |
input={
|
24 |
"model": "dev",
|
25 |
"lora_scale": lora_scale,
|
@@ -34,6 +21,7 @@ def generate_image(lora_scale, guidance_scale, prompt_strength, num_steps, promp
|
|
34 |
"prompt": prompt
|
35 |
}
|
36 |
)
|
|
|
37 |
image_url = output[0] if output else None
|
38 |
return image_url
|
39 |
|
@@ -52,7 +40,7 @@ def create_gradio_interface():
|
|
52 |
# Gradio Interface
|
53 |
interface = gr.Interface(
|
54 |
fn=generate_image, # Die Funktion, die aufgerufen wird
|
55 |
-
inputs=[lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben
|
56 |
outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import replicate
|
3 |
|
4 |
+
DEPLOYMENT_URI = "dd-ds-ai/lora-test-01-deployment-test"
|
5 |
+
|
6 |
|
7 |
+
def generate_image(deployment_uri, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
|
8 |
+
deployment = replicate.deployments.get(deployment_uri)
|
9 |
+
prediction = deployment.predictions.create(
|
10 |
input={
|
11 |
"model": "dev",
|
12 |
"lora_scale": lora_scale,
|
|
|
21 |
"prompt": prompt
|
22 |
}
|
23 |
)
|
24 |
+
prediction.wait()
|
25 |
image_url = output[0] if output else None
|
26 |
return image_url
|
27 |
|
|
|
40 |
# Gradio Interface
|
41 |
interface = gr.Interface(
|
42 |
fn=generate_image, # Die Funktion, die aufgerufen wird
|
43 |
+
inputs=[DEPLOYMENT_URI, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben
|
44 |
outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild
|
45 |
)
|
46 |
|