import gradio as gr import replicate DEPLOYMENT_URI = "dd-ds-ai/lora-test-01-deployment-test" def generate_image(deployment_uri, lora_scale, guidance_scale, prompt_strength, num_steps, prompt): deployment = replicate.deployments.get(deployment_uri) prediction = deployment.predictions.create( input={ "model": "dev", "lora_scale": lora_scale, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": guidance_scale, "output_quality": 90, "prompt_strength": prompt_strength, "extra_lora_scale": 1, "num_inference_steps": num_steps, "prompt": prompt } ) prediction.wait() image_url = output[0] if output else None return image_url # Gradio-Interface erstellen def create_gradio_interface(): lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale") guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale") prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength") num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps") prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper") # Erstelle ein Button-Interface für die Bildgenerierung generate_btn = gr.Button("Bild generieren") # Gradio Interface interface = gr.Interface( fn=generate_image, # Die Funktion, die aufgerufen wird inputs=[DEPLOYMENT_URI, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild ) # Binde den Button an die Bildgenerierung interface.launch(share=True) # Starte die Gradio-App if __name__ == "__main__": create_gradio_interface() # demo.queue().launch()