import gradio as gr import replicate DEPLOYMENT_URIS = { "Lora 500": "dd-ds-ai/abendblatt-lora-500", "Lora 1000": "dd-ds-ai/lora-test-01-deployment-test", "Lora 2000": "dd-ds-ai/abendblatt-lora-2000" } def generate_image(model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt): deployment_uri = DEPLOYMENT_URIS[model_selection] deployment = replicate.deployments.get(deployment_uri) prediction = deployment.predictions.create( input={ "model": "dev", "lora_scale": lora_scale, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": guidance_scale, "output_quality": 90, "prompt_strength": prompt_strength, "extra_lora_scale": 1, "num_inference_steps": num_steps, "prompt": prompt } ) prediction.wait() output = prediction.output image_url = output[0] if output else None return image_url # Gradio-Interface erstellen def create_gradio_interface(): model_selection = gr.Radio(choices=["Lora 500", "Lora 1000", "Lora 2000"], label="Model Selection", value="Lora 1000") lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale") guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale") prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength") num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps") prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper") generate_btn = gr.Button("Bild generieren") interface = gr.Interface( fn=generate_image, inputs=[model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], outputs=gr.Image(label="Generated Image"), ) interface.launch(share=True) # Starte die Gradio-App if __name__ == "__main__": create_gradio_interface()