Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,68 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
13 |
else:
|
14 |
torch_dtype = torch.float32
|
15 |
|
16 |
-
|
17 |
-
pipe = pipe.to(device)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
examples = [
|
43 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
44 |
-
"An astronaut riding a green horse",
|
45 |
-
"A delicious ceviche cheesecake slice",
|
46 |
-
]
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
""
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
with gr.Column(elem_id="col-container"):
|
58 |
-
gr.Markdown(f"""
|
59 |
-
# Text-to-Image Gradio Template
|
60 |
-
""")
|
61 |
-
|
62 |
-
with gr.Row():
|
63 |
-
|
64 |
-
prompt = gr.Text(
|
65 |
-
label="Prompt",
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
seed = gr.Slider(
|
86 |
-
label="Seed",
|
87 |
-
minimum=0,
|
88 |
-
maximum=MAX_SEED,
|
89 |
-
step=1,
|
90 |
-
value=0,
|
91 |
-
)
|
92 |
-
|
93 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
width = gr.Slider(
|
98 |
-
label="Width",
|
99 |
-
minimum=256,
|
100 |
-
maximum=MAX_IMAGE_SIZE,
|
101 |
-
step=32,
|
102 |
-
value=1024, #Replace with defaults that work for your model
|
103 |
-
)
|
104 |
-
|
105 |
-
height = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
-
|
113 |
-
with gr.Row():
|
114 |
-
|
115 |
-
guidance_scale = gr.Slider(
|
116 |
-
label="Guidance scale",
|
117 |
-
minimum=0.0,
|
118 |
-
maximum=10.0,
|
119 |
-
step=0.1,
|
120 |
-
value=0.0, #Replace with defaults that work for your model
|
121 |
-
)
|
122 |
-
|
123 |
-
num_inference_steps = gr.Slider(
|
124 |
-
label="Number of inference steps",
|
125 |
-
minimum=1,
|
126 |
-
maximum=50,
|
127 |
-
step=1,
|
128 |
-
value=2, #Replace with defaults that work for your model
|
129 |
-
)
|
130 |
-
|
131 |
-
gr.Examples(
|
132 |
-
examples = examples,
|
133 |
-
inputs = [prompt]
|
134 |
-
)
|
135 |
-
gr.on(
|
136 |
-
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn = infer,
|
138 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
-
outputs = [result, seed]
|
140 |
)
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
torch_dtype = torch.float16
|
11 |
else:
|
12 |
torch_dtype = torch.float32
|
13 |
|
14 |
+
####
|
|
|
15 |
|
16 |
+
import gradio as gr
|
17 |
+
import replicate
|
18 |
|
|
|
|
|
19 |
|
20 |
+
def generate_image(model, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
|
21 |
+
output = replicate.run(
|
22 |
+
"dd-ds-ai/lora_test_01:70c669221124d8aaf0fc494f9553468bd069483a19e74b2753262008b1e8fbb2",
|
23 |
+
input={
|
24 |
+
"model": model,
|
25 |
+
"lora_scale": lora_scale,
|
26 |
+
"num_outputs": 1,
|
27 |
+
"aspect_ratio": "1:1",
|
28 |
+
"output_format": "webp",
|
29 |
+
"guidance_scale": guidance_scale,
|
30 |
+
"output_quality": 90,
|
31 |
+
"prompt_strength": prompt_strength,
|
32 |
+
"extra_lora_scale": 1,
|
33 |
+
"num_inference_steps": num_steps,
|
34 |
+
"prompt": prompt
|
35 |
+
}
|
36 |
+
)
|
37 |
+
image_url = output[0] if output else None
|
38 |
+
return image_url
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Gradio-Interface erstellen
|
42 |
+
def create_gradio_interface():
|
43 |
+
lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
|
44 |
+
guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
|
45 |
+
prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
|
46 |
+
num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
|
47 |
+
prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
|
48 |
|
49 |
+
# Erstelle ein Button-Interface für die Bildgenerierung
|
50 |
+
generate_btn = gr.Button("Bild generieren")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Gradio Interface
|
53 |
+
interface = gr.Interface(
|
54 |
+
fn=generate_image, # Die Funktion, die aufgerufen wird
|
55 |
+
inputs=[model, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben
|
56 |
+
outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
+
# Binde den Button an die Bildgenerierung
|
60 |
+
interface.launch(share=True)
|
61 |
+
|
62 |
+
|
63 |
+
# Starte die Gradio-App
|
64 |
+
if __name__ == "__main__":
|
65 |
+
create_gradio_interface()
|
66 |
+
|
67 |
+
|
68 |
+
# demo.queue().launch()
|