tamaraDD commited on
Commit
fd95831
·
verified ·
1 Parent(s): 2b31f9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -120
app.py CHANGED
@@ -1,142 +1,68 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
  from diffusers import DiffusionPipeline
6
  import torch
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
13
  else:
14
  torch_dtype = torch.float32
15
 
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
- MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
-
28
- generator = torch.Generator().manual_seed(seed)
29
-
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
-
40
- return image, seed
 
 
 
41
 
42
- examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
- ]
47
 
48
- css="""
49
- #col-container {
50
- margin: 0 auto;
51
- max-width: 640px;
52
- }
53
- """
 
54
 
55
- with gr.Blocks(css=css) as demo:
56
-
57
- with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
 
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
- seed = gr.Slider(
86
- label="Seed",
87
- minimum=0,
88
- maximum=MAX_SEED,
89
- step=1,
90
- value=0,
91
- )
92
-
93
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
- with gr.Row():
96
-
97
- width = gr.Slider(
98
- label="Width",
99
- minimum=256,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=1024, #Replace with defaults that work for your model
103
- )
104
-
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024, #Replace with defaults that work for your model
111
- )
112
-
113
- with gr.Row():
114
-
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=2, #Replace with defaults that work for your model
129
- )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
- gr.on(
136
- triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
140
  )
141
 
142
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  from diffusers import DiffusionPipeline
5
  import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
  if torch.cuda.is_available():
10
  torch_dtype = torch.float16
11
  else:
12
  torch_dtype = torch.float32
13
 
14
+ ####
 
15
 
16
+ import gradio as gr
17
+ import replicate
18
 
 
 
19
 
20
+ def generate_image(model, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
21
+ output = replicate.run(
22
+ "dd-ds-ai/lora_test_01:70c669221124d8aaf0fc494f9553468bd069483a19e74b2753262008b1e8fbb2",
23
+ input={
24
+ "model": model,
25
+ "lora_scale": lora_scale,
26
+ "num_outputs": 1,
27
+ "aspect_ratio": "1:1",
28
+ "output_format": "webp",
29
+ "guidance_scale": guidance_scale,
30
+ "output_quality": 90,
31
+ "prompt_strength": prompt_strength,
32
+ "extra_lora_scale": 1,
33
+ "num_inference_steps": num_steps,
34
+ "prompt": prompt
35
+ }
36
+ )
37
+ image_url = output[0] if output else None
38
+ return image_url
39
 
 
 
 
 
 
40
 
41
+ # Gradio-Interface erstellen
42
+ def create_gradio_interface():
43
+ lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
44
+ guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
45
+ prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
46
+ num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
47
+ prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
48
 
49
+ # Erstelle ein Button-Interface für die Bildgenerierung
50
+ generate_btn = gr.Button("Bild generieren")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ # Gradio Interface
53
+ interface = gr.Interface(
54
+ fn=generate_image, # Die Funktion, die aufgerufen wird
55
+ inputs=[model, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben
56
+ outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  )
58
 
59
+ # Binde den Button an die Bildgenerierung
60
+ interface.launch(share=True)
61
+
62
+
63
+ # Starte die Gradio-App
64
+ if __name__ == "__main__":
65
+ create_gradio_interface()
66
+
67
+
68
+ # demo.queue().launch()