Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import replicate
|
3 |
|
4 |
-
DEPLOYMENT_URI = "dd-ds-ai/lora-test-01-deployment-test"
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
prediction = deployment.predictions.create(
|
10 |
input={
|
11 |
"model": "dev",
|
@@ -21,6 +28,7 @@ def generate_image(lora_scale, guidance_scale, prompt_strength, num_steps, promp
|
|
21 |
"prompt": prompt
|
22 |
}
|
23 |
)
|
|
|
24 |
prediction.wait()
|
25 |
output = prediction.output
|
26 |
image_url = output[0] if output else None
|
@@ -29,23 +37,22 @@ def generate_image(lora_scale, guidance_scale, prompt_strength, num_steps, promp
|
|
29 |
|
30 |
# Gradio-Interface erstellen
|
31 |
def create_gradio_interface():
|
|
|
|
|
32 |
lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
|
33 |
guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
|
34 |
prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
|
35 |
num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
|
36 |
prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
|
37 |
|
38 |
-
# Erstelle ein Button-Interface für die Bildgenerierung
|
39 |
generate_btn = gr.Button("Bild generieren")
|
40 |
|
41 |
-
# Gradio Interface
|
42 |
interface = gr.Interface(
|
43 |
-
fn=generate_image,
|
44 |
-
inputs=[lora_scale, guidance_scale, prompt_strength, num_steps, prompt],
|
45 |
-
outputs=gr.Image(label="Generated Image"),
|
46 |
)
|
47 |
|
48 |
-
# Binde den Button an die Bildgenerierung
|
49 |
interface.launch(share=True)
|
50 |
|
51 |
|
@@ -53,5 +60,4 @@ def create_gradio_interface():
|
|
53 |
if __name__ == "__main__":
|
54 |
create_gradio_interface()
|
55 |
|
56 |
-
|
57 |
-
# demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import replicate
|
3 |
|
|
|
4 |
|
5 |
+
DEPLOYMENT_URIS = {
|
6 |
+
"Lora 500": "dd-ds-ai/lora-test-01-deployment-test",
|
7 |
+
"Lora 1000": "dd-ds-ai/lora-test-01-deployment-test",
|
8 |
+
"Lora 2000": "dd-ds-ai/lora-test-01-deployment-test"
|
9 |
+
}
|
10 |
|
11 |
+
|
12 |
+
def generate_image(model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
|
13 |
+
deployment_uri = DEPLOYMENT_URIS[model_selection]
|
14 |
+
deployment = replicate.deployments.get(deployment_uri)
|
15 |
+
|
16 |
prediction = deployment.predictions.create(
|
17 |
input={
|
18 |
"model": "dev",
|
|
|
28 |
"prompt": prompt
|
29 |
}
|
30 |
)
|
31 |
+
|
32 |
prediction.wait()
|
33 |
output = prediction.output
|
34 |
image_url = output[0] if output else None
|
|
|
37 |
|
38 |
# Gradio-Interface erstellen
|
39 |
def create_gradio_interface():
|
40 |
+
model_selection = gr.Radio(choices=["Lora 500", "Lora 1000", "Lora 2000"], label="Model Selection", value="Lora 1000")
|
41 |
+
|
42 |
lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
|
43 |
guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
|
44 |
prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
|
45 |
num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
|
46 |
prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
|
47 |
|
|
|
48 |
generate_btn = gr.Button("Bild generieren")
|
49 |
|
|
|
50 |
interface = gr.Interface(
|
51 |
+
fn=generate_image,
|
52 |
+
inputs=[model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt],
|
53 |
+
outputs=gr.Image(label="Generated Image"),
|
54 |
)
|
55 |
|
|
|
56 |
interface.launch(share=True)
|
57 |
|
58 |
|
|
|
60 |
if __name__ == "__main__":
|
61 |
create_gradio_interface()
|
62 |
|
63 |
+
|
|