Spaces:
Build error
Build error
File size: 37,592 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from torchlibrosa.augmentation import SpecAugmentation
from audio_infer.pytorch.pytorch_utils import do_mixup, interpolate, pad_framewise_output
import os
import sys
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from torchlibrosa.augmentation import SpecAugmentation
from audio_infer.pytorch.pytorch_utils import do_mixup
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import warnings
from functools import partial
#from mmdet.models.builder import BACKBONES
from mmdet.utils import get_root_logger
from mmcv.runner import load_checkpoint
os.environ['TORCH_HOME'] = '../pretrained_models'
from copy import deepcopy
from timm.models.helpers import load_pretrained
from torch.cuda.amp import autocast
from collections import OrderedDict
import io
import re
from mmcv.runner import _load_checkpoint, load_state_dict
import mmcv.runner
import copy
import random
from einops import rearrange
from einops.layers.torch import Rearrange, Reduce
from torch import nn, einsum
def load_checkpoint(model,
filename,
map_location=None,
strict=False,
logger=None,
revise_keys=[(r'^module\.', '')]):
"""Load checkpoint from a file or URI.
Args:
model (Module): Module to load checkpoint.
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
details.
map_location (str): Same as :func:`torch.load`.
strict (bool): Whether to allow different params for the model and
checkpoint.
logger (:mod:`logging.Logger` or None): The logger for error message.
revise_keys (list): A list of customized keywords to modify the
state_dict in checkpoint. Each item is a (pattern, replacement)
pair of the regular expression operations. Default: strip
the prefix 'module.' by [(r'^module\\.', '')].
Returns:
dict or OrderedDict: The loaded checkpoint.
"""
checkpoint = _load_checkpoint(filename, map_location, logger)
new_proj = torch.nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(4, 4), padding=(2, 2))
new_proj.weight = torch.nn.Parameter(torch.sum(checkpoint['patch_embed1.proj.weight'], dim=1).unsqueeze(1))
checkpoint['patch_embed1.proj.weight'] = new_proj.weight
# OrderedDict is a subclass of dict
if not isinstance(checkpoint, dict):
raise RuntimeError(
f'No state_dict found in checkpoint file {filename}')
# get state_dict from checkpoint
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
# strip prefix of state_dict
metadata = getattr(state_dict, '_metadata', OrderedDict())
for p, r in revise_keys:
state_dict = OrderedDict(
{re.sub(p, r, k): v
for k, v in state_dict.items()})
state_dict = OrderedDict({k.replace('backbone.',''):v for k,v in state_dict.items()})
# Keep metadata in state_dict
state_dict._metadata = metadata
# load state_dict
load_state_dict(model, state_dict, strict, logger)
return checkpoint
def init_layer(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.)
def init_bn(bn):
"""Initialize a Batchnorm layer. """
bn.bias.data.fill_(0.)
bn.weight.data.fill_(1.)
class TimeShift(nn.Module):
def __init__(self, mean, std):
super().__init__()
self.mean = mean
self.std = std
def forward(self, x):
if self.training:
shift = torch.empty(1).normal_(self.mean, self.std).int().item()
x = torch.roll(x, shift, dims=2)
return x
class LinearSoftPool(nn.Module):
"""LinearSoftPool
Linear softmax, takes logits and returns a probability, near to the actual maximum value.
Taken from the paper:
A Comparison of Five Multiple Instance Learning Pooling Functions for Sound Event Detection with Weak Labeling
https://arxiv.org/abs/1810.09050
"""
def __init__(self, pooldim=1):
super().__init__()
self.pooldim = pooldim
def forward(self, logits, time_decision):
return (time_decision**2).sum(self.pooldim) / time_decision.sum(
self.pooldim)
class PVT(nn.Module):
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
fmax, classes_num):
super(PVT, self).__init__()
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
self.time_shift = TimeShift(0, 10)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2)
self.bn0 = nn.BatchNorm2d(64)
self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001,
fdim=64,
patch_size=7,
stride=4,
in_chans=1,
num_classes=classes_num,
embed_dims=[64, 128, 320, 512],
depths=[3, 4, 6, 3],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
sr_ratios=[8, 4, 2, 1],
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_stages=4,
#pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'
)
#self.temp_pool = LinearSoftPool()
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc_audioset = nn.Linear(512, classes_num, bias=True)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.fc_audioset)
def forward(self, input, mixup_lambda=None):
"""Input: (batch_size, times_steps, freq_bins)"""
interpolate_ratio = 32
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
frames_num = x.shape[2]
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.time_shift(x)
x = self.spec_augmenter(x)
# Mixup on spectrogram
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
#print(x.shape) #torch.Size([10, 1, 1001, 64])
x = self.pvt_transformer(x)
#print(x.shape) #torch.Size([10, 800, 128])
x = torch.mean(x, dim=3)
x = x.transpose(1, 2).contiguous()
framewise_output = torch.sigmoid(self.fc_audioset(x))
#clipwise_output = torch.mean(framewise_output, dim=1)
#clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1)
x = framewise_output.transpose(1, 2).contiguous()
x = self.avgpool(x)
clipwise_output = torch.flatten(x, 1)
#print(framewise_output.shape) #torch.Size([10, 100, 17])
framewise_output = interpolate(framewise_output, interpolate_ratio)
#framewise_output = framewise_output[:,:1000,:]
#framewise_output = pad_framewise_output(framewise_output, frames_num)
output_dict = {'framewise_output': framewise_output,
'clipwise_output': clipwise_output}
return output_dict
class PVT2(nn.Module):
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
fmax, classes_num):
super(PVT2, self).__init__()
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
self.time_shift = TimeShift(0, 10)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2)
self.bn0 = nn.BatchNorm2d(64)
self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001,
fdim=64,
patch_size=7,
stride=4,
in_chans=1,
num_classes=classes_num,
embed_dims=[64, 128, 320, 512],
depths=[3, 4, 6, 3],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
sr_ratios=[8, 4, 2, 1],
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_stages=4,
pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'
)
#self.temp_pool = LinearSoftPool()
self.fc_audioset = nn.Linear(512, classes_num, bias=True)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.fc_audioset)
def forward(self, input, mixup_lambda=None):
"""Input: (batch_size, times_steps, freq_bins)"""
interpolate_ratio = 32
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
frames_num = x.shape[2]
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
#x = self.time_shift(x)
x = self.spec_augmenter(x)
# Mixup on spectrogram
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
#print(x.shape) #torch.Size([10, 1, 1001, 64])
x = self.pvt_transformer(x)
#print(x.shape) #torch.Size([10, 800, 128])
x = torch.mean(x, dim=3)
x = x.transpose(1, 2).contiguous()
framewise_output = torch.sigmoid(self.fc_audioset(x))
clipwise_output = torch.mean(framewise_output, dim=1)
#clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1)
#print(framewise_output.shape) #torch.Size([10, 100, 17])
framewise_output = interpolate(framewise_output, interpolate_ratio)
#framewise_output = framewise_output[:,:1000,:]
#framewise_output = pad_framewise_output(framewise_output, frames_num)
output_dict = {'framewise_output': framewise_output,
'clipwise_output': clipwise_output}
return output_dict
class PVT_2layer(nn.Module):
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
fmax, classes_num):
super(PVT_2layer, self).__init__()
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
self.time_shift = TimeShift(0, 10)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2)
self.bn0 = nn.BatchNorm2d(64)
self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001,
fdim=64,
patch_size=7,
stride=4,
in_chans=1,
num_classes=classes_num,
embed_dims=[64, 128],
depths=[3, 4],
num_heads=[1, 2],
mlp_ratios=[8, 8],
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
sr_ratios=[8, 4],
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_stages=2,
pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'
)
#self.temp_pool = LinearSoftPool()
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc_audioset = nn.Linear(128, classes_num, bias=True)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.fc_audioset)
def forward(self, input, mixup_lambda=None):
"""Input: (batch_size, times_steps, freq_bins)"""
interpolate_ratio = 8
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
frames_num = x.shape[2]
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.time_shift(x)
x = self.spec_augmenter(x)
# Mixup on spectrogram
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
#print(x.shape) #torch.Size([10, 1, 1001, 64])
x = self.pvt_transformer(x)
#print(x.shape) #torch.Size([10, 800, 128])
x = torch.mean(x, dim=3)
x = x.transpose(1, 2).contiguous()
framewise_output = torch.sigmoid(self.fc_audioset(x))
#clipwise_output = torch.mean(framewise_output, dim=1)
#clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1)
x = framewise_output.transpose(1, 2).contiguous()
x = self.avgpool(x)
clipwise_output = torch.flatten(x, 1)
#print(framewise_output.shape) #torch.Size([10, 100, 17])
framewise_output = interpolate(framewise_output, interpolate_ratio)
#framewise_output = framewise_output[:,:1000,:]
#framewise_output = pad_framewise_output(framewise_output, frames_num)
output_dict = {'framewise_output': framewise_output,
'clipwise_output': clipwise_output}
return output_dict
class PVT_lr(nn.Module):
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
fmax, classes_num):
super(PVT_lr, self).__init__()
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
self.time_shift = TimeShift(0, 10)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2)
self.bn0 = nn.BatchNorm2d(64)
self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001,
fdim=64,
patch_size=7,
stride=4,
in_chans=1,
num_classes=classes_num,
embed_dims=[64, 128, 320, 512],
depths=[3, 4, 6, 3],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
sr_ratios=[8, 4, 2, 1],
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_stages=4,
pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'
)
self.temp_pool = LinearSoftPool()
self.fc_audioset = nn.Linear(512, classes_num, bias=True)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.fc_audioset)
def forward(self, input, mixup_lambda=None):
"""Input: (batch_size, times_steps, freq_bins)"""
interpolate_ratio = 32
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
frames_num = x.shape[2]
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.time_shift(x)
x = self.spec_augmenter(x)
# Mixup on spectrogram
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
#print(x.shape) #torch.Size([10, 1, 1001, 64])
x = self.pvt_transformer(x)
#print(x.shape) #torch.Size([10, 800, 128])
x = torch.mean(x, dim=3)
x = x.transpose(1, 2).contiguous()
framewise_output = torch.sigmoid(self.fc_audioset(x))
clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1)
#print(framewise_output.shape) #torch.Size([10, 100, 17])
framewise_output = interpolate(framewise_output, interpolate_ratio)
#framewise_output = framewise_output[:,:1000,:]
#framewise_output = pad_framewise_output(framewise_output, frames_num)
output_dict = {'framewise_output': framewise_output,
'clipwise_output': clipwise_output}
return output_dict
class PVT_nopretrain(nn.Module):
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
fmax, classes_num):
super(PVT_nopretrain, self).__init__()
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size,
win_length=window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size,
n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
self.time_shift = TimeShift(0, 10)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2)
self.bn0 = nn.BatchNorm2d(64)
self.pvt_transformer = PyramidVisionTransformerV2(tdim=1001,
fdim=64,
patch_size=7,
stride=4,
in_chans=1,
num_classes=classes_num,
embed_dims=[64, 128, 320, 512],
depths=[3, 4, 6, 3],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
sr_ratios=[8, 4, 2, 1],
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_stages=4,
#pretrained='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'
)
self.temp_pool = LinearSoftPool()
self.fc_audioset = nn.Linear(512, classes_num, bias=True)
self.init_weights()
def init_weights(self):
init_bn(self.bn0)
init_layer(self.fc_audioset)
def forward(self, input, mixup_lambda=None):
"""Input: (batch_size, times_steps, freq_bins)"""
interpolate_ratio = 32
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
frames_num = x.shape[2]
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.time_shift(x)
x = self.spec_augmenter(x)
# Mixup on spectrogram
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
#print(x.shape) #torch.Size([10, 1, 1001, 64])
x = self.pvt_transformer(x)
#print(x.shape) #torch.Size([10, 800, 128])
x = torch.mean(x, dim=3)
x = x.transpose(1, 2).contiguous()
framewise_output = torch.sigmoid(self.fc_audioset(x))
clipwise_output = self.temp_pool(x, framewise_output).clamp(1e-7, 1.).squeeze(1)
#print(framewise_output.shape) #torch.Size([10, 100, 17])
framewise_output = interpolate(framewise_output, interpolate_ratio)
framewise_output = framewise_output[:,:1000,:]
#framewise_output = pad_framewise_output(framewise_output, frames_num)
output_dict = {'framewise_output': framewise_output,
'clipwise_output': clipwise_output}
return output_dict
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.linear = linear
if self.linear:
self.relu = nn.ReLU()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = self.fc1(x)
if self.linear:
x = self.relu(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.linear = linear
self.sr_ratio = sr_ratio
if not linear:
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.pool = nn.AdaptiveAvgPool2d(7)
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
self.norm = nn.LayerNorm(dim)
self.act = nn.GELU()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if not self.linear:
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
x_ = self.act(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Pooling(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(
pool_size, stride=1, padding=pool_size//2, count_include_pad=False)
def forward(self, x):
return self.pool(x) - x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear)
#self.norm3 = norm_layer(dim)
#self.token_mixer = Pooling(pool_size=3)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class OverlapPatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, tdim, fdim, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = (tdim, fdim)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // stride, img_size[1] // stride
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
padding=(patch_size[0] // 3, patch_size[1] // 3))
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, H, W
class PyramidVisionTransformerV2(nn.Module):
def __init__(self, tdim=1001, fdim=64, patch_size=16, stride=4, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1], num_stages=2, linear=False, pretrained=None):
super().__init__()
# self.num_classes = num_classes
self.depths = depths
self.num_stages = num_stages
self.linear = linear
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(tdim=tdim if i == 0 else tdim // (2 ** (i + 1)),
fdim=fdim if i == 0 else tdim // (2 ** (i + 1)),
patch_size=7 if i == 0 else 3,
stride=stride if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i])
block = nn.ModuleList([Block(
dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer,
sr_ratio=sr_ratios[i], linear=linear)
for j in range(depths[i])])
norm = norm_layer(embed_dims[i])
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed)
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
#self.n = nn.Linear(125, 250, bias=True)
# classification head
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
self.init_weights(pretrained)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x)
#print(x.shape)
for blk in block:
x = blk(x, H, W)
#print(x.shape)
x = norm(x)
#if i != self.num_stages - 1:
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
#print(x.shape)
return x
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2)
return x
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
|