Spaces:
Build error
Build error
File size: 16,054 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
from torch import nn
import copy
import torch
from utils.hparams import hparams
from modules.GenerSpeech.model.wavenet import WN
import math
from modules.fastspeech.tts_modules import LayerNorm
import torch.nn.functional as F
from utils.tts_utils import group_hidden_by_segs, sequence_mask
from scipy.cluster.vq import kmeans2
from torch.nn import functional as F
class VQEmbeddingEMA(nn.Module):
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5,
print_vq_prob=False):
super(VQEmbeddingEMA, self).__init__()
self.commitment_cost = commitment_cost
self.n_embeddings = n_embeddings
self.decay = decay
self.epsilon = epsilon
self.print_vq_prob = print_vq_prob
self.register_buffer('data_initialized', torch.zeros(1))
init_bound = 1 / 512
embedding = torch.Tensor(n_embeddings, embedding_dim)
embedding.uniform_(-init_bound, init_bound)
self.register_buffer("embedding", embedding)
self.register_buffer("ema_count", torch.zeros(n_embeddings))
self.register_buffer("ema_weight", self.embedding.clone())
def encode(self, x):
B, T, _ = x.shape
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0) # [B*T_mel, N_vq]
indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel]
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
return x_flat, quantized, indices
def forward(self, x):
"""
:param x: [B, T, D]
:return: [B, T, D]
"""
B, T, _ = x.shape
M, D = self.embedding.size()
if self.training and self.data_initialized.item() == 0:
print('| running kmeans in VQVAE') # data driven initialization for the embeddings
x_flat = x.detach().reshape(-1, D)
rp = torch.randperm(x_flat.size(0))
kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points')
self.embedding.copy_(torch.from_numpy(kd[0]))
x_flat, quantized, indices = self.encode(x)
encodings = F.one_hot(indices, M).float()
self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat))
self.ema_count.copy_(torch.sum(encodings, dim=0))
x_flat, quantized, indices = self.encode(x)
encodings = F.one_hot(indices, M).float()
indices = indices.reshape(B, T)
if self.training and self.data_initialized.item() != 0:
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)
n = torch.sum(self.ema_count)
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n
dw = torch.matmul(encodings.t(), x_flat)
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)
self.data_initialized.fill_(1)
e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none')
nonpadding = (x.abs().sum(-1) > 0).float()
e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum()
loss = self.commitment_cost * e_latent_loss
quantized = x + (quantized - x).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
if self.print_vq_prob:
print("| VQ code avg_probs: ", avg_probs)
return quantized, loss, indices, perplexity
class CrossAttenLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(CrossAttenLayer, self).__init__()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
self.activation = nn.ReLU()
def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False):
# src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo)
if forcing:
maxlength = src.shape[0]
k = local_emotion.shape[0] / src.shape[0]
lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1
lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1
mask1 = sequence_mask(lengths1, local_emotion.shape[0])
mask2 = sequence_mask(lengths2, local_emotion.shape[0])
mask = mask1.float() - mask2.float()
attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo)
src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1)
else:
src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.activation(self.linear1(src)))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src, attn_emo
class ProsodyAligner(nn.Module):
def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None):
super(ProsodyAligner, self).__init__()
self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)])
self.num_layers = num_layers
self.norm = norm
self.guided_sigma = guided_sigma
self.guided_layers = guided_layers if guided_layers is not None else num_layers
def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False):
output = src
guided_loss = 0
attn_emo_list = []
for i, mod in enumerate(self.layers):
# output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph),
# emotion_key_padding_mask: (B, Temo)
output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing)
attn_emo_list.append(attn_emo.unsqueeze(1))
# attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph)
if i < self.guided_layers and src_key_padding_mask is not None:
s_length = (~src_key_padding_mask).float().sum(-1) # B
emo_length = (~emotion_key_padding_mask).float().sum(-1)
attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma)
g_loss_emo = attn_emo * attn_w_emo # N, L, S
non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1)
guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss
if self.norm is not None:
output = self.norm(output)
return output, guided_loss, attn_emo_list
def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device))
grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1)
grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1)
rilen = rilen.unsqueeze(1).unsqueeze(1)
rolen = rolen.unsqueeze(1).unsqueeze(1)
return 1.0 - torch.exp(
-((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2))
)
class LocalStyleAdaptor(nn.Module):
def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0):
super(LocalStyleAdaptor, self).__init__()
self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout'])
self.n_embed = num_vq_codes
self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit'])
self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4)
self.padding_idx = padding_idx
self.hidden_size = hidden_size
def forward(self, ref_mels, mel2ph=None, no_vq=False):
"""
:param ref_mels: [B, T, 80]
:return: [B, 1, H]
"""
padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data
ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2)
if mel2ph is not None:
ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph))
else:
ref_ph = ref_mels
prosody = self.encoder(ref_ph)
if no_vq:
return prosody
z, vq_loss, vq_tokens, ppl = self.vqvae(prosody)
vq_loss = vq_loss.mean()
return z, vq_loss, ppl
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class Conv1d(nn.Conv1d):
"""A wrapper around nn.Conv1d, that works on (batch, time, channels)"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0):
super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, dilation=dilation,
groups=groups, bias=bias, padding=padding)
def forward(self, x):
return super().forward(x.transpose(2, 1)).transpose(2, 1)
def init_weights_func(m):
classname = m.__class__.__name__
if classname.find("Conv1d") != -1:
torch.nn.init.xavier_uniform_(m.weight)
class ResidualBlock(nn.Module):
"""Implements conv->PReLU->norm n-times"""
def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0,
c_multiple=2, ln_eps=1e-12):
super(ResidualBlock, self).__init__()
if norm_type == 'bn':
norm_builder = lambda: nn.BatchNorm1d(channels)
elif norm_type == 'in':
norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True)
elif norm_type == 'gn':
norm_builder = lambda: nn.GroupNorm(8, channels)
elif norm_type == 'ln':
norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps)
else:
norm_builder = lambda: nn.Identity()
self.blocks = [
nn.Sequential(
norm_builder(),
nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation,
padding=(dilation * (kernel_size - 1)) // 2),
LambdaLayer(lambda x: x * kernel_size ** -0.5),
nn.GELU(),
nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation),
)
for i in range(n)
]
self.blocks = nn.ModuleList(self.blocks)
self.dropout = dropout
def forward(self, x):
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
for b in self.blocks:
x_ = b(x)
if self.dropout > 0 and self.training:
x_ = F.dropout(x_, self.dropout, training=self.training)
x = x + x_
x = x * nonpadding
return x
class Pad(nn.ZeroPad2d):
def __init__(self, kernel_size, dilation):
pad_total = dilation * (kernel_size - 1)
begin = pad_total // 2
end = pad_total - begin
super(Pad, self).__init__((begin, end, begin, end))
class ZeroTemporalPad(nn.ZeroPad2d):
"""Pad sequences to equal lentgh in the temporal dimension"""
def __init__(self, kernel_size, dilation, causal=False):
total_pad = (dilation * (kernel_size - 1))
if causal:
super(ZeroTemporalPad, self).__init__((total_pad, 0))
else:
begin = total_pad // 2
end = total_pad - begin
super(ZeroTemporalPad, self).__init__((begin, end))
class ConvBlocks(nn.Module):
"""Decodes the expanded phoneme encoding into spectrograms"""
def __init__(self, channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True):
super(ConvBlocks, self).__init__()
self.res_blocks = nn.Sequential(
*[ResidualBlock(channels, kernel_size, d,
n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple,
dropout=dropout, ln_eps=ln_eps)
for d in dilations],
)
if norm_type == 'bn':
norm = nn.BatchNorm1d(channels)
elif norm_type == 'in':
norm = nn.InstanceNorm1d(channels, affine=True)
elif norm_type == 'gn':
norm = nn.GroupNorm(8, channels)
elif norm_type == 'ln':
norm = LayerNorm(channels, dim=1, eps=ln_eps)
self.last_norm = norm
self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1)
if init_weights:
self.apply(init_weights_func)
def forward(self, x):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = x.transpose(1, 2)
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
x = self.res_blocks(x) * nonpadding
x = self.last_norm(x) * nonpadding
x = self.post_net1(x) * nonpadding
return x.transpose(1, 2)
class TextConvEncoder(ConvBlocks):
def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True):
super().__init__(channels, out_dims, dilations, kernel_size,
norm_type, layers_in_block, c_multiple,
dropout, ln_eps, init_weights)
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(channels)
def forward(self, txt_tokens):
"""
:param txt_tokens: [B, T]
:return: {
'encoder_out': [B x T x C]
}
"""
x = self.embed_scale * self.embed_tokens(txt_tokens)
return super().forward(x)
class ConditionalConvBlocks(ConvBlocks):
def __init__(self, channels, g_channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True):
super().__init__(channels, out_dims, dilations, kernel_size,
norm_type, layers_in_block, c_multiple,
dropout, ln_eps, init_weights)
self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1)
self.is_BTC = is_BTC
if init_weights:
self.g_prenet.apply(init_weights_func)
def forward(self, x, g, x_mask):
if self.is_BTC:
x = x.transpose(1, 2)
g = g.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
x = x + self.g_prenet(g)
x = x * x_mask
if not self.is_BTC:
x = x.transpose(1, 2)
x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC
if not self.is_BTC:
x = x.transpose(1, 2)
return x
|