File size: 16,054 Bytes
98f685a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from torch import nn
import copy
import torch
from utils.hparams import hparams
from modules.GenerSpeech.model.wavenet import WN
import math

from modules.fastspeech.tts_modules import LayerNorm
import torch.nn.functional as F
from utils.tts_utils import group_hidden_by_segs, sequence_mask

from scipy.cluster.vq import kmeans2
from torch.nn import functional as F


class VQEmbeddingEMA(nn.Module):
    def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5,
                 print_vq_prob=False):
        super(VQEmbeddingEMA, self).__init__()
        self.commitment_cost = commitment_cost
        self.n_embeddings = n_embeddings
        self.decay = decay
        self.epsilon = epsilon
        self.print_vq_prob = print_vq_prob
        self.register_buffer('data_initialized', torch.zeros(1))
        init_bound = 1 / 512
        embedding = torch.Tensor(n_embeddings, embedding_dim)
        embedding.uniform_(-init_bound, init_bound)
        self.register_buffer("embedding", embedding)
        self.register_buffer("ema_count", torch.zeros(n_embeddings))
        self.register_buffer("ema_weight", self.embedding.clone())

    def encode(self, x):
        B, T, _ = x.shape
        M, D = self.embedding.size()
        x_flat = x.detach().reshape(-1, D)

        distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
                                torch.sum(x_flat ** 2, dim=1, keepdim=True),
                                x_flat, self.embedding.t(),
                                alpha=-2.0, beta=1.0)  # [B*T_mel, N_vq]
        indices = torch.argmin(distances.float(), dim=-1)  # [B*T_mel]
        quantized = F.embedding(indices, self.embedding)
        quantized = quantized.view_as(x)
        return x_flat, quantized, indices

    def forward(self, x):
        """

        :param x: [B, T, D]
        :return: [B, T, D]
        """
        B, T, _ = x.shape
        M, D = self.embedding.size()
        if self.training and self.data_initialized.item() == 0:
            print('| running kmeans in VQVAE')  # data driven initialization for the embeddings
            x_flat = x.detach().reshape(-1, D)
            rp = torch.randperm(x_flat.size(0))
            kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points')
            self.embedding.copy_(torch.from_numpy(kd[0]))
            x_flat, quantized, indices = self.encode(x)
            encodings = F.one_hot(indices, M).float()
            self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat))
            self.ema_count.copy_(torch.sum(encodings, dim=0))

        x_flat, quantized, indices = self.encode(x)
        encodings = F.one_hot(indices, M).float()
        indices = indices.reshape(B, T)

        if self.training and self.data_initialized.item() != 0:
            self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)

            n = torch.sum(self.ema_count)
            self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n

            dw = torch.matmul(encodings.t(), x_flat)
            self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw

            self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)
        self.data_initialized.fill_(1)

        e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none')
        nonpadding = (x.abs().sum(-1) > 0).float()
        e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum()
        loss = self.commitment_cost * e_latent_loss

        quantized = x + (quantized - x).detach()

        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
        if self.print_vq_prob:
            print("| VQ code avg_probs: ", avg_probs)
        return quantized, loss, indices, perplexity

class CrossAttenLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
        super(CrossAttenLayer, self).__init__()
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)
        self.activation = nn.ReLU()

    def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False):
        # src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo)
        if forcing:
            maxlength = src.shape[0]
            k = local_emotion.shape[0] / src.shape[0]
            lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1
            lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1
            mask1 = sequence_mask(lengths1, local_emotion.shape[0])
            mask2 = sequence_mask(lengths2, local_emotion.shape[0])
            mask = mask1.float() - mask2.float()
            attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo)
            src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1)
        else:
            src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.activation(self.linear1(src)))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src, attn_emo


class ProsodyAligner(nn.Module):
    def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None):
        super(ProsodyAligner, self).__init__()
        self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)])
        self.num_layers = num_layers
        self.norm = norm
        self.guided_sigma = guided_sigma
        self.guided_layers = guided_layers if guided_layers is not None else num_layers

    def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False):
        output = src
        guided_loss = 0
        attn_emo_list = []
        for i, mod in enumerate(self.layers):
            # output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph),
            # emotion_key_padding_mask: (B, Temo)
            output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing)
            attn_emo_list.append(attn_emo.unsqueeze(1))
            # attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph)
            if i < self.guided_layers and src_key_padding_mask is not None:
                s_length = (~src_key_padding_mask).float().sum(-1) # B
                emo_length = (~emotion_key_padding_mask).float().sum(-1)
                attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma)

                g_loss_emo = attn_emo * attn_w_emo  # N, L, S
                non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1)
                guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss

        if self.norm is not None:
            output = self.norm(output)

        return output, guided_loss, attn_emo_list

def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma):
    grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device))
    grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1)
    grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1)
    rilen = rilen.unsqueeze(1).unsqueeze(1)
    rolen = rolen.unsqueeze(1).unsqueeze(1)
    return 1.0 - torch.exp(
        -((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2))
    )

class LocalStyleAdaptor(nn.Module):
    def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0):
        super(LocalStyleAdaptor, self).__init__()
        self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout'])
        self.n_embed = num_vq_codes
        self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit'])
        self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4)
        self.padding_idx = padding_idx
        self.hidden_size = hidden_size

    def forward(self, ref_mels, mel2ph=None, no_vq=False):
        """

        :param ref_mels: [B, T, 80]
        :return: [B, 1, H]
        """
        padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data
        ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2)
        if mel2ph is not None:
            ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph))
        else:
            ref_ph = ref_mels
        prosody = self.encoder(ref_ph)
        if no_vq:
            return prosody
        z, vq_loss, vq_tokens, ppl = self.vqvae(prosody)
        vq_loss = vq_loss.mean()
        return z, vq_loss, ppl




class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


class Conv1d(nn.Conv1d):
    """A wrapper around nn.Conv1d, that works on (batch, time, channels)"""

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0):
        super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels,
                                     kernel_size=kernel_size, stride=stride, dilation=dilation,
                                     groups=groups, bias=bias, padding=padding)

    def forward(self, x):
        return super().forward(x.transpose(2, 1)).transpose(2, 1)


def init_weights_func(m):
    classname = m.__class__.__name__
    if classname.find("Conv1d") != -1:
        torch.nn.init.xavier_uniform_(m.weight)


class ResidualBlock(nn.Module):
    """Implements conv->PReLU->norm n-times"""

    def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0,
                 c_multiple=2, ln_eps=1e-12):
        super(ResidualBlock, self).__init__()

        if norm_type == 'bn':
            norm_builder = lambda: nn.BatchNorm1d(channels)
        elif norm_type == 'in':
            norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True)
        elif norm_type == 'gn':
            norm_builder = lambda: nn.GroupNorm(8, channels)
        elif norm_type == 'ln':
            norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps)
        else:
            norm_builder = lambda: nn.Identity()

        self.blocks = [
            nn.Sequential(
                norm_builder(),
                nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation,
                          padding=(dilation * (kernel_size - 1)) // 2),
                LambdaLayer(lambda x: x * kernel_size ** -0.5),
                nn.GELU(),
                nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation),
            )
            for i in range(n)
        ]

        self.blocks = nn.ModuleList(self.blocks)
        self.dropout = dropout

    def forward(self, x):
        nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
        for b in self.blocks:
            x_ = b(x)
            if self.dropout > 0 and self.training:
                x_ = F.dropout(x_, self.dropout, training=self.training)
            x = x + x_
            x = x * nonpadding
        return x


class Pad(nn.ZeroPad2d):
    def __init__(self, kernel_size, dilation):
        pad_total = dilation * (kernel_size - 1)
        begin = pad_total // 2
        end = pad_total - begin

        super(Pad, self).__init__((begin, end, begin, end))


class ZeroTemporalPad(nn.ZeroPad2d):
    """Pad sequences to equal lentgh in the temporal dimension"""

    def __init__(self, kernel_size, dilation, causal=False):
        total_pad = (dilation * (kernel_size - 1))

        if causal:
            super(ZeroTemporalPad, self).__init__((total_pad, 0))
        else:
            begin = total_pad // 2
            end = total_pad - begin
            super(ZeroTemporalPad, self).__init__((begin, end))


class ConvBlocks(nn.Module):
    """Decodes the expanded phoneme encoding into spectrograms"""

    def __init__(self, channels, out_dims, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5, init_weights=True):
        super(ConvBlocks, self).__init__()
        self.res_blocks = nn.Sequential(
            *[ResidualBlock(channels, kernel_size, d,
                            n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple,
                            dropout=dropout, ln_eps=ln_eps)
              for d in dilations],
        )
        if norm_type == 'bn':
            norm = nn.BatchNorm1d(channels)
        elif norm_type == 'in':
            norm = nn.InstanceNorm1d(channels, affine=True)
        elif norm_type == 'gn':
            norm = nn.GroupNorm(8, channels)
        elif norm_type == 'ln':
            norm = LayerNorm(channels, dim=1, eps=ln_eps)
        self.last_norm = norm
        self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1)
        if init_weights:
            self.apply(init_weights_func)

    def forward(self, x):
        """

        :param x: [B, T, H]
        :return:  [B, T, H]
        """
        x = x.transpose(1, 2)
        nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
        x = self.res_blocks(x) * nonpadding
        x = self.last_norm(x) * nonpadding
        x = self.post_net1(x) * nonpadding
        return x.transpose(1, 2)


class TextConvEncoder(ConvBlocks):
    def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5, init_weights=True):
        super().__init__(channels, out_dims, dilations, kernel_size,
                         norm_type, layers_in_block, c_multiple,
                         dropout, ln_eps, init_weights)
        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(channels)

    def forward(self, txt_tokens):
        """

        :param txt_tokens: [B, T]
        :return: {
            'encoder_out': [B x T x C]
        }
        """
        x = self.embed_scale * self.embed_tokens(txt_tokens)
        return super().forward(x)


class ConditionalConvBlocks(ConvBlocks):
    def __init__(self, channels, g_channels, out_dims, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True):
        super().__init__(channels, out_dims, dilations, kernel_size,
                         norm_type, layers_in_block, c_multiple,
                         dropout, ln_eps, init_weights)
        self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1)
        self.is_BTC = is_BTC
        if init_weights:
            self.g_prenet.apply(init_weights_func)

    def forward(self, x, g, x_mask):
        if self.is_BTC:
            x = x.transpose(1, 2)
            g = g.transpose(1, 2)
            x_mask = x_mask.transpose(1, 2)
        x = x + self.g_prenet(g)
        x = x * x_mask

        if not self.is_BTC:
            x = x.transpose(1, 2)
        x = super(ConditionalConvBlocks, self).forward(x)  # input needs to be BTC
        if not self.is_BTC:
            x = x.transpose(1, 2)
        return x