Spaces:
Build error
Build error
File size: 12,988 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import matplotlib
matplotlib.use('Agg')
from data_gen.tts.data_gen_utils import get_pitch
from modules.fastspeech.tts_modules import mel2ph_to_dur
import matplotlib.pyplot as plt
from utils import audio
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse
from vocoders.base_vocoder import get_vocoder_cls
import json
from utils.plot import spec_to_figure
from utils.hparams import hparams
import torch
import torch.optim
import torch.nn.functional as F
import torch.utils.data
from modules.GenerSpeech.task.dataset import GenerSpeech_dataset
from modules.GenerSpeech.model.generspeech import GenerSpeech
import torch.distributions
import numpy as np
from utils.tts_utils import select_attn
import utils
import os
from tasks.tts.fs2 import FastSpeech2Task
class GenerSpeechTask(FastSpeech2Task):
def __init__(self):
super(GenerSpeechTask, self).__init__()
self.dataset_cls = GenerSpeech_dataset
def build_tts_model(self):
self.model = GenerSpeech(self.phone_encoder)
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
self.load_ckpt(hparams['load_ckpt'], strict=False)
utils.num_params(self.model)
return self.model
def run_model(self, model, sample, return_output=False):
txt_tokens = sample['txt_tokens'] # [B, T_t]
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
mel2word = sample['mel2word']
f0 = sample['f0'] # [B, T_s]
uv = sample['uv'] # [B, T_s] 0/1
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
emo_embed = sample.get('emo_embed')
output = model(txt_tokens, mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed,
ref_mels=target, f0=f0, uv=uv, tgt_mels=target, global_steps=self.global_step, infer=False)
losses = {}
losses['postflow'] = output['postflow']
if self.global_step > hparams['forcing']:
losses['gloss'] = (output['gloss_utter'] + output['gloss_ph'] + output['gloss_word']) / 3
if self.global_step > hparams['vq_start']:
losses['vq_loss'] = (output['vq_loss_utter'] + output['vq_loss_ph'] + output['vq_loss_word']) / 3
losses['ppl_utter'] = output['ppl_utter']
losses['ppl_ph'] = output['ppl_ph']
losses['ppl_word'] = output['ppl_word']
self.add_mel_loss(output['mel_out'], target, losses)
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
if hparams['use_pitch_embed']:
self.add_pitch_loss(output, sample, losses)
output['select_attn'] = select_attn(output['attn_ph'])
if not return_output:
return losses
else:
return losses, output
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
encdec_attn = model_out['select_attn']
mel_out = self.model.out2mel(model_out['mel_out'])
outputs = utils.tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots']:
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
self.plot_mel(batch_idx, sample['mels'], mel_out)
self.plot_dur(batch_idx, sample, model_out)
if hparams['use_pitch_embed']:
self.plot_pitch(batch_idx, sample, model_out)
if self.vocoder is None:
self.vocoder = get_vocoder_cls(hparams)()
if self.global_step > 0:
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
emo_embed = sample.get('emo_embed')
ref_mels = sample['mels']
mel2ph = sample['mel2ph'] # [B, T_s]
mel2word = sample['mel2word']
# with gt duration
model_out = self.model(sample['txt_tokens'], mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed,
emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True)
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step,
hparams['audio_sample_rate'])
self.logger.add_figure(f'ali_{batch_idx}', spec_to_figure(encdec_attn[0]), self.global_step)
self.logger.add_figure(
f'mel_gtdur_{batch_idx}',
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
# with pred duration
model_out = self.model(sample['txt_tokens'], ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels,
global_steps=self.global_step, infer=True)
self.logger.add_figure(
f'mel_{batch_idx}',
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate'])
# gt wav
if self.global_step <= hparams['valid_infer_interval']:
mel_gt = sample['mels'][0].cpu()
wav_gt = self.vocoder.spec2wav(mel_gt)
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050)
return outputs
############
# infer
############
def test_step(self, sample, batch_idx):
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
emo_embed = sample.get('emo_embed')
txt_tokens = sample['txt_tokens']
mel2ph, uv, f0 = None, None, None
ref_mel2word = sample['mel2word']
ref_mel2ph = sample['mel2ph']
ref_mels = sample['mels']
if hparams['use_gt_dur']:
mel2ph = sample['mel2ph']
if hparams['use_gt_f0']:
f0 = sample['f0']
uv = sample['uv']
global_steps = 200000
run_model = lambda: self.model(
txt_tokens, spk_embed=spk_embed, emo_embed=emo_embed, mel2ph=mel2ph, ref_mel2ph=ref_mel2ph, ref_mel2word=ref_mel2word,
f0=f0, uv=uv, ref_mels=ref_mels, global_steps=global_steps, infer=True)
outputs = run_model()
sample['outputs'] = self.model.out2mel(outputs['mel_out'])
sample['mel2ph_pred'] = outputs['mel2ph']
if hparams['use_pitch_embed']:
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
if hparams['pitch_type'] == 'ph':
sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph'])
sample['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(sample)
def after_infer(self, predictions, sil_start_frame=0):
predictions = utils.unpack_dict_to_list(predictions)
assert len(predictions) == 1, 'Only support batch_size=1 in inference.'
prediction = predictions[0]
prediction = utils.tensors_to_np(prediction)
item_name = prediction.get('item_name')
text = prediction.get('text')
ph_tokens = prediction.get('txt_tokens')
mel_gt = prediction["mels"]
mel2ph_gt = prediction.get("mel2ph")
mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None
mel_pred = prediction["outputs"]
mel2ph_pred = prediction.get("mel2ph_pred")
f0_gt = prediction.get("f0")
f0_pred = prediction.get("f0_pred")
str_phs = None
if self.phone_encoder is not None and 'txt_tokens' in prediction:
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)
if 'encdec_attn' in prediction:
encdec_attn = prediction['encdec_attn'] # (1, Tph, Tmel)
encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)]
txt_lengths = prediction.get('txt_lengths')
encdec_attn = encdec_attn.T[:, :txt_lengths]
else:
encdec_attn = None
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
wav_pred[:sil_start_frame * hparams['hop_size']] = 0
gen_dir = self.gen_dir
base_fn = f'[{self.results_id:06d}][{item_name}][%s]'
# if text is not None:
# base_fn += text.replace(":", "%3A")[:80]
base_fn = base_fn.replace(' ', '_')
if not hparams['profile_infer']:
os.makedirs(gen_dir, exist_ok=True)
os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{gen_dir}/plot', exist_ok=True)
if hparams.get('save_mel_npy', False):
os.makedirs(f'{gen_dir}/npy', exist_ok=True)
if 'encdec_attn' in prediction:
os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'TTS', gen_dir, str_phs, mel2ph_pred, encdec_attn]))
if mel_gt is not None and hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'Ref', gen_dir, str_phs, mel2ph_gt]))
if hparams['save_f0']:
import matplotlib.pyplot as plt
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
fig = plt.figure()
plt.plot(f0_pred_, label=r'$\hat{f_0}$')
plt.plot(f0_gt_, label=r'$f_0$')
plt.legend()
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
plt.close(fig)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
self.results_id += 1
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()),
'wav_fn_pred': base_fn % 'TTS',
'wav_fn_gt': base_fn % 'Ref',
}
@staticmethod
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None):
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
f0, _ = get_pitch(wav_out, mel, hparams)
f0 = f0 / 10 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png')
plt.close(fig)
if hparams.get('save_mel_npy', False):
np.save(f'{gen_dir}/npy/{base_fn}', mel)
if alignment is not None:
fig, ax = plt.subplots(figsize=(12, 16))
im = ax.imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
ax.set_xticks(np.arange(0, alignment.shape[1], 5))
ax.set_yticks(np.arange(0, alignment.shape[0], 10))
ax.set_ylabel("$S_p$ index")
ax.set_xlabel("$H_c$ index")
fig.colorbar(im, ax=ax)
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png')
plt.close(fig)
|