File size: 12,988 Bytes
98f685a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import matplotlib
matplotlib.use('Agg')
from data_gen.tts.data_gen_utils import get_pitch
from modules.fastspeech.tts_modules import mel2ph_to_dur
import matplotlib.pyplot as plt
from utils import audio
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse
from vocoders.base_vocoder import get_vocoder_cls
import json
from utils.plot import spec_to_figure
from utils.hparams import hparams
import torch
import torch.optim
import torch.nn.functional as F
import torch.utils.data
from modules.GenerSpeech.task.dataset import GenerSpeech_dataset
from modules.GenerSpeech.model.generspeech import GenerSpeech
import torch.distributions
import numpy as np
from utils.tts_utils import select_attn
import utils
import os
from tasks.tts.fs2 import FastSpeech2Task

class GenerSpeechTask(FastSpeech2Task):
    def __init__(self):
        super(GenerSpeechTask, self).__init__()
        self.dataset_cls = GenerSpeech_dataset

    def build_tts_model(self):
        self.model = GenerSpeech(self.phone_encoder)

    def build_model(self):
        self.build_tts_model()
        if hparams['load_ckpt'] != '':
            self.load_ckpt(hparams['load_ckpt'], strict=False)
        utils.num_params(self.model)
        return self.model

    def run_model(self, model, sample, return_output=False):
        txt_tokens = sample['txt_tokens']  # [B, T_t]
        target = sample['mels']  # [B, T_s, 80]
        mel2ph = sample['mel2ph']  # [B, T_s]
        mel2word = sample['mel2word']
        f0 = sample['f0']  # [B, T_s]
        uv = sample['uv']  # [B, T_s] 0/1

        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        emo_embed = sample.get('emo_embed')
        output = model(txt_tokens, mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed,
                       ref_mels=target, f0=f0, uv=uv, tgt_mels=target, global_steps=self.global_step, infer=False)
        losses = {}
        losses['postflow'] = output['postflow']
        if self.global_step > hparams['forcing']:
            losses['gloss'] = (output['gloss_utter'] + output['gloss_ph'] + output['gloss_word']) / 3
        if self.global_step > hparams['vq_start']:
            losses['vq_loss'] = (output['vq_loss_utter'] + output['vq_loss_ph'] + output['vq_loss_word']) / 3
            losses['ppl_utter'] = output['ppl_utter']
            losses['ppl_ph'] = output['ppl_ph']
            losses['ppl_word'] = output['ppl_word']
        self.add_mel_loss(output['mel_out'], target, losses)
        self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
        if hparams['use_pitch_embed']:
            self.add_pitch_loss(output, sample, losses)
        output['select_attn'] = select_attn(output['attn_ph'])

        if not return_output:
            return losses
        else:
            return losses, output

    def validation_step(self, sample, batch_idx):
        outputs = {}
        outputs['losses'] = {}
        outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
        outputs['total_loss'] = sum(outputs['losses'].values())
        outputs['nsamples'] = sample['nsamples']
        encdec_attn = model_out['select_attn']
        mel_out = self.model.out2mel(model_out['mel_out'])
        outputs = utils.tensors_to_scalars(outputs)
        if self.global_step % hparams['valid_infer_interval'] == 0 \
                and batch_idx < hparams['num_valid_plots']:
            vmin = hparams['mel_vmin']
            vmax = hparams['mel_vmax']
            self.plot_mel(batch_idx, sample['mels'], mel_out)
            self.plot_dur(batch_idx, sample, model_out)
            if hparams['use_pitch_embed']:
                self.plot_pitch(batch_idx, sample, model_out)
            if self.vocoder is None:
                self.vocoder = get_vocoder_cls(hparams)()
            if self.global_step > 0:
                spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
                emo_embed = sample.get('emo_embed')
                ref_mels = sample['mels']
                mel2ph = sample['mel2ph']  # [B, T_s]
                mel2word = sample['mel2word']
                # with gt duration
                model_out = self.model(sample['txt_tokens'], mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed,
                                       emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True)
                wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
                self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step,
                                      hparams['audio_sample_rate'])
                self.logger.add_figure(f'ali_{batch_idx}', spec_to_figure(encdec_attn[0]), self.global_step)
                self.logger.add_figure(
                    f'mel_gtdur_{batch_idx}',
                    spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
                # with pred duration
                model_out = self.model(sample['txt_tokens'], ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels,
                                       global_steps=self.global_step, infer=True)
                self.logger.add_figure(
                    f'mel_{batch_idx}',
                    spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step)
                wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu())
                self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate'])
            # gt wav
            if self.global_step <= hparams['valid_infer_interval']:
                mel_gt = sample['mels'][0].cpu()
                wav_gt = self.vocoder.spec2wav(mel_gt)
                self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050)
        return outputs

    ############
    # infer
    ############
    def test_step(self, sample, batch_idx):
        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        emo_embed = sample.get('emo_embed')
        txt_tokens = sample['txt_tokens']
        mel2ph, uv, f0 = None, None, None
        ref_mel2word = sample['mel2word']
        ref_mel2ph = sample['mel2ph']
        ref_mels = sample['mels']
        if hparams['use_gt_dur']:
            mel2ph = sample['mel2ph']
        if hparams['use_gt_f0']:
            f0 = sample['f0']
            uv = sample['uv']
        global_steps = 200000
        run_model = lambda: self.model(
            txt_tokens, spk_embed=spk_embed, emo_embed=emo_embed, mel2ph=mel2ph, ref_mel2ph=ref_mel2ph, ref_mel2word=ref_mel2word,
            f0=f0, uv=uv, ref_mels=ref_mels, global_steps=global_steps, infer=True)
        outputs = run_model()
        sample['outputs'] = self.model.out2mel(outputs['mel_out'])
        sample['mel2ph_pred'] = outputs['mel2ph']
        if hparams['use_pitch_embed']:
            sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
            if hparams['pitch_type'] == 'ph':
                sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph'])
            sample['f0_pred'] = outputs.get('f0_denorm')

        return self.after_infer(sample)



    def after_infer(self, predictions, sil_start_frame=0):
        predictions = utils.unpack_dict_to_list(predictions)
        assert len(predictions) == 1, 'Only support batch_size=1 in inference.'
        prediction = predictions[0]
        prediction = utils.tensors_to_np(prediction)
        item_name = prediction.get('item_name')
        text = prediction.get('text')
        ph_tokens = prediction.get('txt_tokens')
        mel_gt = prediction["mels"]
        mel2ph_gt = prediction.get("mel2ph")
        mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None
        mel_pred = prediction["outputs"]
        mel2ph_pred = prediction.get("mel2ph_pred")
        f0_gt = prediction.get("f0")
        f0_pred = prediction.get("f0_pred")

        str_phs = None
        if self.phone_encoder is not None and 'txt_tokens' in prediction:
            str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)

        if 'encdec_attn' in prediction:
            encdec_attn = prediction['encdec_attn']  # (1, Tph, Tmel)
            encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)]
            txt_lengths = prediction.get('txt_lengths')
            encdec_attn = encdec_attn.T[:, :txt_lengths]
        else:
            encdec_attn = None

        wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
        wav_pred[:sil_start_frame * hparams['hop_size']] = 0
        gen_dir = self.gen_dir
        base_fn = f'[{self.results_id:06d}][{item_name}][%s]'
        # if text is not None:
        #     base_fn += text.replace(":", "%3A")[:80]
        base_fn = base_fn.replace(' ', '_')
        if not hparams['profile_infer']:
            os.makedirs(gen_dir, exist_ok=True)
            os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
            os.makedirs(f'{gen_dir}/plot', exist_ok=True)
            if hparams.get('save_mel_npy', False):
                os.makedirs(f'{gen_dir}/npy', exist_ok=True)
            if 'encdec_attn' in prediction:
                os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True)
            self.saving_results_futures.append(
                self.saving_result_pool.apply_async(self.save_result, args=[
                    wav_pred, mel_pred, base_fn % 'TTS', gen_dir, str_phs, mel2ph_pred, encdec_attn]))

            if mel_gt is not None and hparams['save_gt']:
                wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
                self.saving_results_futures.append(
                    self.saving_result_pool.apply_async(self.save_result, args=[
                        wav_gt, mel_gt, base_fn % 'Ref', gen_dir, str_phs, mel2ph_gt]))
                if hparams['save_f0']:
                    import matplotlib.pyplot as plt
                    f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
                    f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
                    fig = plt.figure()
                    plt.plot(f0_pred_, label=r'$\hat{f_0}$')
                    plt.plot(f0_gt_, label=r'$f_0$')
                    plt.legend()
                    plt.tight_layout()
                    plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
                    plt.close(fig)

            print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
        self.results_id += 1
        return {
            'item_name': item_name,
            'text': text,
            'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()),
            'wav_fn_pred': base_fn % 'TTS',
            'wav_fn_gt': base_fn % 'Ref',
        }



    @staticmethod
    def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None):
        audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
                       norm=hparams['out_wav_norm'])
        fig = plt.figure(figsize=(14, 10))
        spec_vmin = hparams['mel_vmin']
        spec_vmax = hparams['mel_vmax']
        heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
        fig.colorbar(heatmap)
        f0, _ = get_pitch(wav_out, mel, hparams)
        f0 = f0 / 10 * (f0 > 0)
        plt.plot(f0, c='white', linewidth=1, alpha=0.6)
        if mel2ph is not None and str_phs is not None:
            decoded_txt = str_phs.split(" ")
            dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
            dur = [0] + list(np.cumsum(dur))
            for i in range(len(dur) - 1):
                shift = (i % 20) + 1
                plt.text(dur[i], shift, decoded_txt[i])
                plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
                plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
                           alpha=1, linewidth=1)
        plt.tight_layout()
        plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png')
        plt.close(fig)
        if hparams.get('save_mel_npy', False):
            np.save(f'{gen_dir}/npy/{base_fn}', mel)
        if alignment is not None:
            fig, ax = plt.subplots(figsize=(12, 16))
            im = ax.imshow(alignment, aspect='auto', origin='lower',
                           interpolation='none')
            ax.set_xticks(np.arange(0, alignment.shape[1], 5))
            ax.set_yticks(np.arange(0, alignment.shape[0], 10))
            ax.set_ylabel("$S_p$ index")
            ax.set_xlabel("$H_c$ index")
            fig.colorbar(im, ax=ax)
            fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png')
            plt.close(fig)