Spaces:
Build error
Build error
File size: 11,423 Bytes
98f685a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import math
import torch
from torch import nn
from torch.nn import Linear
from modules.commons.conv import ConvBlocks, ConditionalConvBlocks
from modules.commons.common_layers import Embedding
from modules.commons.rel_transformer import RelTransformerEncoder
from modules.commons.transformer import MultiheadAttention, FFTBlocks
from modules.commons.align_ops import clip_mel2token_to_multiple, build_word_mask, expand_states, mel2ph_to_mel2word
from modules.portaspeech.fs import FS_DECODERS, FastSpeech
from modules.portaspeech.fvae import FVAE
from utils.tts_utils import group_hidden_by_segs
from utils.hparams import hparams
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
"""
:param x: [B, T]
:return: [B, T, H]
"""
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, :, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class PortaSpeech(FastSpeech):
def __init__(self, ph_dictionary, word_dictionary, out_dims=None):
super().__init__(ph_dictionary, out_dims)
# build linguistic encoder
if hparams['use_word_encoder']:
# default False, use independent word embedding instead of phoneme encoding to represent word
self.word_encoder = RelTransformerEncoder(
len(word_dictionary), self.hidden_size, self.hidden_size, self.hidden_size, 2,
hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
if hparams['dur_level'] == 'word':
if hparams['word_encoder_type'] == 'rel_fft':
self.ph2word_encoder = RelTransformerEncoder(
0, self.hidden_size, self.hidden_size, self.hidden_size, 2,
hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
if hparams['word_encoder_type'] == 'fft':
self.ph2word_encoder = FFTBlocks(
self.hidden_size, hparams['word_enc_layers'], 1, num_heads=hparams['num_heads'])
self.sin_pos = SinusoidalPosEmb(self.hidden_size)
self.enc_pos_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.dec_query_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.dec_res_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
self.attn = MultiheadAttention(self.hidden_size, 1, encoder_decoder_attention=True, bias=False)
self.attn.enable_torch_version = False
if hparams['text_encoder_postnet']:
self.text_encoder_postnet = ConvBlocks(
self.hidden_size, self.hidden_size, [1] * 3, 5, layers_in_block=2)
else:
self.sin_pos = SinusoidalPosEmb(self.hidden_size)
# build VAE decoder
if hparams['use_fvae']:
del self.decoder
del self.mel_out
self.fvae = FVAE(
c_in_out=self.out_dims,
hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
kernel_size=hparams['fvae_kernel_size'],
enc_n_layers=hparams['fvae_enc_n_layers'],
dec_n_layers=hparams['fvae_dec_n_layers'],
c_cond=self.hidden_size,
use_prior_flow=hparams['use_prior_flow'],
flow_hidden=hparams['prior_flow_hidden'],
flow_kernel_size=hparams['prior_flow_kernel_size'],
flow_n_steps=hparams['prior_flow_n_blocks'],
strides=[hparams['fvae_strides']],
encoder_type=hparams['fvae_encoder_type'],
decoder_type=hparams['fvae_decoder_type'],
)
else:
self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, 0)
if hparams['add_word_pos']:
self.word_pos_proj = Linear(self.hidden_size, self.hidden_size)
def build_embedding(self, dictionary, embed_dim):
num_embeddings = len(dictionary)
emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
return emb
def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None,
spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None,
global_step=None, *args, **kwargs):
ret = {}
style_embed = self.forward_style_embed(spk_embed, spk_id)
x, tgt_nonpadding = self.run_text_encoder(
txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, **kwargs)
x = x * tgt_nonpadding
ret['nonpadding'] = tgt_nonpadding
if hparams['use_pitch_embed']:
x = x + self.pitch_embed(pitch)
ret['decoder_inp'] = x
ret['mel_out_fvae'] = ret['mel_out'] = self.run_decoder(x, tgt_nonpadding, ret, infer, tgt_mels, global_step)
return ret
def run_text_encoder(self, txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, **kwargs):
word2word = torch.arange(word_len)[None, :].to(ph2word.device) + 1 # [B, T_mel, T_word]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
use_bert = hparams.get("use_bert") is True
if use_bert:
ph_encoder_out = self.ph_encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=ph2word,
graph_lst=kwargs['graph_lst'], etypes_lst=kwargs['etypes_lst'],
cl_feats=kwargs['cl_feats'], ret=ret) * src_nonpadding + style_embed
else:
ph_encoder_out = self.ph_encoder(txt_tokens) * src_nonpadding + style_embed
if hparams['use_word_encoder']:
word_encoder_out = self.word_encoder(word_tokens) + style_embed
ph_encoder_out = ph_encoder_out + expand_states(word_encoder_out, ph2word)
if hparams['dur_level'] == 'word':
word_encoder_out = 0
h_ph_gb_word = group_hidden_by_segs(ph_encoder_out, ph2word, word_len)[0]
word_encoder_out = word_encoder_out + self.ph2word_encoder(h_ph_gb_word)
if hparams['use_word_encoder']:
word_encoder_out = word_encoder_out + self.word_encoder(word_tokens)
mel2word = self.forward_dur(ph_encoder_out, mel2word, ret, ph2word=ph2word, word_len=word_len)
mel2word = clip_mel2token_to_multiple(mel2word, hparams['frames_multiple'])
tgt_nonpadding = (mel2word > 0).float()[:, :, None]
enc_pos = self.get_pos_embed(word2word, ph2word) # [B, T_ph, H]
dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H]
dec_word_mask = build_word_mask(mel2word, ph2word) # [B, T_mel, T_ph]
x, weight = self.attention(ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask)
if hparams['add_word_pos']:
x = x + self.word_pos_proj(dec_pos)
ret['attn'] = weight
else:
mel2ph = self.forward_dur(ph_encoder_out, mel2ph, ret)
mel2ph = clip_mel2token_to_multiple(mel2ph, hparams['frames_multiple'])
mel2word = mel2ph_to_mel2word(mel2ph, ph2word)
x = expand_states(ph_encoder_out, mel2ph)
if hparams['add_word_pos']:
dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H]
x = x + self.word_pos_proj(dec_pos)
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
if hparams['use_word_encoder']:
x = x + expand_states(word_encoder_out, mel2word)
return x, tgt_nonpadding
def attention(self, ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask):
ph_kv = self.enc_pos_proj(torch.cat([ph_encoder_out, enc_pos], -1))
word_enc_out_expend = expand_states(word_encoder_out, mel2word)
word_enc_out_expend = torch.cat([word_enc_out_expend, dec_pos], -1)
if hparams['text_encoder_postnet']:
word_enc_out_expend = self.dec_res_proj(word_enc_out_expend)
word_enc_out_expend = self.text_encoder_postnet(word_enc_out_expend)
dec_q = x_res = word_enc_out_expend
else:
dec_q = self.dec_query_proj(word_enc_out_expend)
x_res = self.dec_res_proj(word_enc_out_expend)
ph_kv, dec_q = ph_kv.transpose(0, 1), dec_q.transpose(0, 1)
x, (weight, _) = self.attn(dec_q, ph_kv, ph_kv, attn_mask=(1 - dec_word_mask) * -1e9)
x = x.transpose(0, 1)
x = x + x_res
return x, weight
def run_decoder(self, x, tgt_nonpadding, ret, infer, tgt_mels=None, global_step=0):
if not hparams['use_fvae']:
x = self.decoder(x)
x = self.mel_out(x)
ret['kl'] = 0
return x * tgt_nonpadding
else:
decoder_inp = x
x = x.transpose(1, 2) # [B, H, T]
tgt_nonpadding_BHT = tgt_nonpadding.transpose(1, 2) # [B, H, T]
if infer:
z = self.fvae(cond=x, infer=True)
else:
tgt_mels = tgt_mels.transpose(1, 2) # [B, 80, T]
z, ret['kl'], ret['z_p'], ret['m_q'], ret['logs_q'] = self.fvae(
tgt_mels, tgt_nonpadding_BHT, cond=x)
if global_step < hparams['posterior_start_steps']:
z = torch.randn_like(z)
x_recon = self.fvae.decoder(z, nonpadding=tgt_nonpadding_BHT, cond=x).transpose(1, 2)
ret['pre_mel_out'] = x_recon
return x_recon
def forward_dur(self, dur_input, mel2word, ret, **kwargs):
"""
:param dur_input: [B, T_txt, H]
:param mel2ph: [B, T_mel]
:param txt_tokens: [B, T_txt]
:param ret:
:return:
"""
src_padding = dur_input.data.abs().sum(-1) == 0
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
dur = self.dur_predictor(dur_input, src_padding)
if hparams['dur_level'] == 'word':
word_len = kwargs['word_len']
ph2word = kwargs['ph2word']
B, T_ph = ph2word.shape
dur = torch.zeros([B, word_len.max() + 1]).to(ph2word.device).scatter_add(1, ph2word, dur)
dur = dur[:, 1:]
ret['dur'] = dur
if mel2word is None:
mel2word = self.length_regulator(dur).detach()
return mel2word
def get_pos_embed(self, word2word, x2word):
x_pos = build_word_mask(word2word, x2word).float() # [B, T_word, T_ph]
x_pos = (x_pos.cumsum(-1) / x_pos.sum(-1).clamp(min=1)[..., None] * x_pos).sum(1)
x_pos = self.sin_pos(x_pos.float()) # [B, T_ph, H]
return x_pos
def store_inverse_all(self):
def remove_weight_norm(m):
try:
if hasattr(m, 'store_inverse'):
m.store_inverse()
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)
|