Spaces:
Build error
Build error
import os | |
import sys | |
sys.path.insert(1, os.path.join(sys.path[0], '../utils')) | |
import numpy as np | |
import argparse | |
import librosa | |
import matplotlib.pyplot as plt | |
import torch | |
from utilities import create_folder, get_filename | |
from models import * | |
from pytorch_utils import move_data_to_device | |
import config | |
def audio_tagging(args): | |
"""Inference audio tagging result of an audio clip. | |
""" | |
# Arugments & parameters | |
sample_rate = args.sample_rate | |
window_size = args.window_size | |
hop_size = args.hop_size | |
mel_bins = args.mel_bins | |
fmin = args.fmin | |
fmax = args.fmax | |
model_type = args.model_type | |
checkpoint_path = args.checkpoint_path | |
audio_path = args.audio_path | |
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') | |
classes_num = config.classes_num | |
labels = config.labels | |
# Model | |
Model = eval(model_type) | |
model = Model(sample_rate=sample_rate, window_size=window_size, | |
hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, | |
classes_num=classes_num) | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
model.load_state_dict(checkpoint['model']) | |
# Parallel | |
if 'cuda' in str(device): | |
model.to(device) | |
print('GPU number: {}'.format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
else: | |
print('Using CPU.') | |
# Load audio | |
(waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) | |
waveform = waveform[None, :] # (1, audio_length) | |
waveform = move_data_to_device(waveform, device) | |
# Forward | |
with torch.no_grad(): | |
model.eval() | |
batch_output_dict = model(waveform, None) | |
clipwise_output = batch_output_dict['clipwise_output'].data.cpu().numpy()[0] | |
"""(classes_num,)""" | |
sorted_indexes = np.argsort(clipwise_output)[::-1] | |
# Print audio tagging top probabilities | |
for k in range(10): | |
print('{}: {:.3f}'.format(np.array(labels)[sorted_indexes[k]], | |
clipwise_output[sorted_indexes[k]])) | |
# Print embedding | |
if 'embedding' in batch_output_dict.keys(): | |
embedding = batch_output_dict['embedding'].data.cpu().numpy()[0] | |
print('embedding: {}'.format(embedding.shape)) | |
return clipwise_output, labels | |
def sound_event_detection(args): | |
"""Inference sound event detection result of an audio clip. | |
""" | |
# Arugments & parameters | |
sample_rate = args.sample_rate | |
window_size = args.window_size | |
hop_size = args.hop_size | |
mel_bins = args.mel_bins | |
fmin = args.fmin | |
fmax = args.fmax | |
model_type = args.model_type | |
checkpoint_path = args.checkpoint_path | |
audio_path = args.audio_path | |
device = torch.device('cuda') if args.cuda and torch.cuda.is_available() else torch.device('cpu') | |
classes_num = config.classes_num | |
labels = config.labels | |
frames_per_second = sample_rate // hop_size | |
# Paths | |
fig_path = os.path.join('results', '{}.png'.format(get_filename(audio_path))) | |
create_folder(os.path.dirname(fig_path)) | |
# Model | |
Model = eval(model_type) | |
model = Model(sample_rate=sample_rate, window_size=window_size, | |
hop_size=hop_size, mel_bins=mel_bins, fmin=fmin, fmax=fmax, | |
classes_num=classes_num) | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
model.load_state_dict(checkpoint['model']) | |
# Parallel | |
print('GPU number: {}'.format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
if 'cuda' in str(device): | |
model.to(device) | |
# Load audio | |
(waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) | |
waveform = waveform[None, :] # (1, audio_length) | |
waveform = move_data_to_device(waveform, device) | |
# Forward | |
with torch.no_grad(): | |
model.eval() | |
batch_output_dict = model(waveform, None) | |
framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] | |
"""(time_steps, classes_num)""" | |
print('Sound event detection result (time_steps x classes_num): {}'.format( | |
framewise_output.shape)) | |
sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] | |
top_k = 10 # Show top results | |
top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]] | |
"""(time_steps, top_k)""" | |
# Plot result | |
stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=window_size, | |
hop_length=hop_size, window='hann', center=True) | |
frames_num = stft.shape[-1] | |
fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) | |
axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') | |
axs[0].set_ylabel('Frequency bins') | |
axs[0].set_title('Log spectrogram') | |
axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) | |
axs[1].xaxis.set_ticks(np.arange(0, frames_num, frames_per_second)) | |
axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / frames_per_second)) | |
axs[1].yaxis.set_ticks(np.arange(0, top_k)) | |
axs[1].yaxis.set_ticklabels(np.array(labels)[sorted_indexes[0 : top_k]]) | |
axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) | |
axs[1].set_xlabel('Seconds') | |
axs[1].xaxis.set_ticks_position('bottom') | |
plt.tight_layout() | |
plt.savefig(fig_path) | |
print('Save sound event detection visualization to {}'.format(fig_path)) | |
return framewise_output, labels | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Example of parser. ') | |
subparsers = parser.add_subparsers(dest='mode') | |
parser_at = subparsers.add_parser('audio_tagging') | |
parser_at.add_argument('--sample_rate', type=int, default=32000) | |
parser_at.add_argument('--window_size', type=int, default=1024) | |
parser_at.add_argument('--hop_size', type=int, default=320) | |
parser_at.add_argument('--mel_bins', type=int, default=64) | |
parser_at.add_argument('--fmin', type=int, default=50) | |
parser_at.add_argument('--fmax', type=int, default=14000) | |
parser_at.add_argument('--model_type', type=str, required=True) | |
parser_at.add_argument('--checkpoint_path', type=str, required=True) | |
parser_at.add_argument('--audio_path', type=str, required=True) | |
parser_at.add_argument('--cuda', action='store_true', default=False) | |
parser_sed = subparsers.add_parser('sound_event_detection') | |
parser_sed.add_argument('--sample_rate', type=int, default=32000) | |
parser_sed.add_argument('--window_size', type=int, default=1024) | |
parser_sed.add_argument('--hop_size', type=int, default=320) | |
parser_sed.add_argument('--mel_bins', type=int, default=64) | |
parser_sed.add_argument('--fmin', type=int, default=50) | |
parser_sed.add_argument('--fmax', type=int, default=14000) | |
parser_sed.add_argument('--model_type', type=str, required=True) | |
parser_sed.add_argument('--checkpoint_path', type=str, required=True) | |
parser_sed.add_argument('--audio_path', type=str, required=True) | |
parser_sed.add_argument('--cuda', action='store_true', default=False) | |
args = parser.parse_args() | |
if args.mode == 'audio_tagging': | |
audio_tagging(args) | |
elif args.mode == 'sound_event_detection': | |
sound_event_detection(args) | |
else: | |
raise Exception('Error argument!') |