Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
raw
history blame
5.43 kB
import numpy as np
import csv
sample_rate = 32000
clip_samples = sample_rate * 10 # Audio clips are 10-second
# Load label
with open('./audio_detection/audio_infer/metadata/class_labels_indices.csv', 'r') as f:
reader = csv.reader(f, delimiter=',')
lines = list(reader)
labels = []
ids = [] # Each label has a unique id such as "/m/068hy"
for i1 in range(1, len(lines)):
id = lines[i1][1]
label = lines[i1][2]
ids.append(id)
labels.append(label)
classes_num = len(labels)
lb_to_ix = {label : i for i, label in enumerate(labels)}
ix_to_lb = {i : label for i, label in enumerate(labels)}
id_to_ix = {id : i for i, id in enumerate(ids)}
ix_to_id = {i : id for i, id in enumerate(ids)}
full_samples_per_class = np.array([
937432, 16344, 7822, 10271, 2043, 14420, 733, 1511,
1258, 424, 1751, 704, 369, 590, 1063, 1375,
5026, 743, 853, 1648, 714, 1497, 1251, 2139,
1093, 133, 224, 39469, 6423, 407, 1559, 4546,
6826, 7464, 2468, 549, 4063, 334, 587, 238,
1766, 691, 114, 2153, 236, 209, 421, 740,
269, 959, 137, 4192, 485, 1515, 655, 274,
69, 157, 1128, 807, 1022, 346, 98, 680,
890, 352, 4169, 2061, 1753, 9883, 1339, 708,
37857, 18504, 12864, 2475, 2182, 757, 3624, 677,
1683, 3583, 444, 1780, 2364, 409, 4060, 3097,
3143, 502, 723, 600, 230, 852, 1498, 1865,
1879, 2429, 5498, 5430, 2139, 1761, 1051, 831,
2401, 2258, 1672, 1711, 987, 646, 794, 25061,
5792, 4256, 96, 8126, 2740, 752, 513, 554,
106, 254, 1592, 556, 331, 615, 2841, 737,
265, 1349, 358, 1731, 1115, 295, 1070, 972,
174, 937780, 112337, 42509, 49200, 11415, 6092, 13851,
2665, 1678, 13344, 2329, 1415, 2244, 1099, 5024,
9872, 10948, 4409, 2732, 1211, 1289, 4807, 5136,
1867, 16134, 14519, 3086, 19261, 6499, 4273, 2790,
8820, 1228, 1575, 4420, 3685, 2019, 664, 324,
513, 411, 436, 2997, 5162, 3806, 1389, 899,
8088, 7004, 1105, 3633, 2621, 9753, 1082, 26854,
3415, 4991, 2129, 5546, 4489, 2850, 1977, 1908,
1719, 1106, 1049, 152, 136, 802, 488, 592,
2081, 2712, 1665, 1128, 250, 544, 789, 2715,
8063, 7056, 2267, 8034, 6092, 3815, 1833, 3277,
8813, 2111, 4662, 2678, 2954, 5227, 1472, 2591,
3714, 1974, 1795, 4680, 3751, 6585, 2109, 36617,
6083, 16264, 17351, 3449, 5034, 3931, 2599, 4134,
3892, 2334, 2211, 4516, 2766, 2862, 3422, 1788,
2544, 2403, 2892, 4042, 3460, 1516, 1972, 1563,
1579, 2776, 1647, 4535, 3921, 1261, 6074, 2922,
3068, 1948, 4407, 712, 1294, 1019, 1572, 3764,
5218, 975, 1539, 6376, 1606, 6091, 1138, 1169,
7925, 3136, 1108, 2677, 2680, 1383, 3144, 2653,
1986, 1800, 1308, 1344, 122231, 12977, 2552, 2678,
7824, 768, 8587, 39503, 3474, 661, 430, 193,
1405, 1442, 3588, 6280, 10515, 785, 710, 305,
206, 4990, 5329, 3398, 1771, 3022, 6907, 1523,
8588, 12203, 666, 2113, 7916, 434, 1636, 5185,
1062, 664, 952, 3490, 2811, 2749, 2848, 15555,
363, 117, 1494, 1647, 5886, 4021, 633, 1013,
5951, 11343, 2324, 243, 372, 943, 734, 242,
3161, 122, 127, 201, 1654, 768, 134, 1467,
642, 1148, 2156, 1368, 1176, 302, 1909, 61,
223, 1812, 287, 422, 311, 228, 748, 230,
1876, 539, 1814, 737, 689, 1140, 591, 943,
353, 289, 198, 490, 7938, 1841, 850, 457,
814, 146, 551, 728, 1627, 620, 648, 1621,
2731, 535, 88, 1736, 736, 328, 293, 3170,
344, 384, 7640, 433, 215, 715, 626, 128,
3059, 1833, 2069, 3732, 1640, 1508, 836, 567,
2837, 1151, 2068, 695, 1494, 3173, 364, 88,
188, 740, 677, 273, 1533, 821, 1091, 293,
647, 318, 1202, 328, 532, 2847, 526, 721,
370, 258, 956, 1269, 1641, 339, 1322, 4485,
286, 1874, 277, 757, 1393, 1330, 380, 146,
377, 394, 318, 339, 1477, 1886, 101, 1435,
284, 1425, 686, 621, 221, 117, 87, 1340,
201, 1243, 1222, 651, 1899, 421, 712, 1016,
1279, 124, 351, 258, 7043, 368, 666, 162,
7664, 137, 70159, 26179, 6321, 32236, 33320, 771,
1169, 269, 1103, 444, 364, 2710, 121, 751,
1609, 855, 1141, 2287, 1940, 3943, 289])