Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
raw
history blame
5.08 kB
import numpy as np
import scipy.linalg
from scipy.spatial.transform import Rotation as R
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from src.warping import GeometricTimeWarper, MonotoneTimeWarper
from src.utils import Net
class GeometricWarper(nn.Module):
def __init__(self, sampling_rate=48000):
super().__init__()
self.warper = GeometricTimeWarper(sampling_rate=sampling_rate)
def _transmitter_mouth(self, view):
# offset between tracking markers and real mouth position in the dataset
mouth_offset = np.array([0.09, 0, -0.20])
quat = view[:, 3:, :].transpose(2, 1).contiguous().detach().cpu().view(-1, 4).numpy()
# make sure zero-padded values are set to non-zero values (else scipy raises an exception)
norms = scipy.linalg.norm(quat, axis=1)
eps_val = (norms == 0).astype(np.float32)
quat = quat + eps_val[:, None]
transmitter_rot_mat = R.from_quat(quat)
transmitter_mouth = transmitter_rot_mat.apply(mouth_offset, inverse=True)
transmitter_mouth = th.Tensor(transmitter_mouth).view(view.shape[0], -1, 3).transpose(2, 1).contiguous()
if view.is_cuda:
transmitter_mouth = transmitter_mouth.cuda()
return transmitter_mouth
def _3d_displacements(self, view):
transmitter_mouth = self._transmitter_mouth(view)
# offset between tracking markers and ears in the dataset
left_ear_offset = th.Tensor([0, -0.08, -0.22]).cuda() if view.is_cuda else th.Tensor([0, -0.08, -0.22])
right_ear_offset = th.Tensor([0, 0.08, -0.22]).cuda() if view.is_cuda else th.Tensor([0, 0.08, -0.22])
# compute displacements between transmitter mouth and receiver left/right ear
displacement_left = view[:, 0:3, :] + transmitter_mouth - left_ear_offset[None, :, None]
displacement_right = view[:, 0:3, :] + transmitter_mouth - right_ear_offset[None, :, None]
displacement = th.stack([displacement_left, displacement_right], dim=1)
return displacement
def _warpfield(self, view, seq_length):
return self.warper.displacements2warpfield(self._3d_displacements(view), seq_length)
def forward(self, mono, view):
'''
:param mono: input signal as tensor of shape B x 1 x T
:param view: rx/tx position/orientation as tensor of shape B x 7 x K (K = T / 400)
:return: warped: warped left/right ear signal as tensor of shape B x 2 x T
'''
return self.warper(th.cat([mono, mono], dim=1), self._3d_displacements(view))
class Warpnet(nn.Module):
def __init__(self, layers=4, channels=64, view_dim=7):
super().__init__()
self.layers = [nn.Conv1d(view_dim if l == 0 else channels, channels, kernel_size=2) for l in range(layers)]
self.layers = nn.ModuleList(self.layers)
self.linear = nn.Conv1d(channels, 2, kernel_size=1)
self.neural_warper = MonotoneTimeWarper()
self.geometric_warper = GeometricWarper()
def neural_warpfield(self, view, seq_length):
warpfield = view
for layer in self.layers:
warpfield = F.pad(warpfield, pad=[1, 0])
warpfield = F.relu(layer(warpfield))
warpfield = self.linear(warpfield)
warpfield = F.interpolate(warpfield, size=seq_length)
return warpfield
def forward(self, mono, view):
'''
:param mono: input signal as tensor of shape B x 1 x T
:param view: rx/tx position/orientation as tensor of shape B x 7 x K (K = T / 400)
:return: warped: warped left/right ear signal as tensor of shape B x 2 x T
'''
geometric_warpfield = self.geometric_warper._warpfield(view, mono.shape[-1])
neural_warpfield = self.neural_warpfield(view, mono.shape[-1])
warpfield = geometric_warpfield + neural_warpfield
# ensure causality
warpfield = -F.relu(-warpfield) # the predicted warp
warped = self.neural_warper(th.cat([mono, mono], dim=1), warpfield)
return warped
class BinauralNetwork(Net):
def __init__(self,
view_dim=7,
warpnet_layers=4,
warpnet_channels=64,
model_name='binaural_network',
use_cuda=True):
super().__init__(model_name, use_cuda)
self.warper = Warpnet(warpnet_layers, warpnet_channels)
if self.use_cuda:
self.cuda()
def forward(self, mono, view):
'''
:param mono: the input signal as a B x 1 x T tensor
:param view: the receiver/transmitter position as a B x 7 x T tensor
:return: out: the binaural output produced by the network
intermediate: a two-channel audio signal obtained from the output of each intermediate layer
as a list of B x 2 x T tensors
'''
# print('mono ', mono.shape)
# print('view ', view.shape)
warped = self.warper(mono, view)
# print('warped ', warped.shape)
return warped