Spaces:
Build error
Build error
from data_gen.tts.emotion.params_model import * | |
from data_gen.tts.emotion.params_data import * | |
from torch.nn.utils import clip_grad_norm_ | |
from scipy.optimize import brentq | |
from torch import nn | |
import numpy as np | |
import torch | |
class EmotionEncoder(nn.Module): | |
def __init__(self, device, loss_device): | |
super().__init__() | |
self.loss_device = loss_device | |
# Network defition | |
self.lstm = nn.LSTM(input_size=mel_n_channels, | |
hidden_size=model_hidden_size, | |
num_layers=model_num_layers, | |
batch_first=True).to(device) | |
self.linear = nn.Linear(in_features=model_hidden_size, | |
out_features=model_embedding_size).to(device) | |
self.relu = torch.nn.ReLU().to(device) | |
# Cosine similarity scaling (with fixed initial parameter values) | |
self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device) | |
self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device) | |
# Loss | |
self.loss_fn = nn.CrossEntropyLoss().to(loss_device) | |
def do_gradient_ops(self): | |
# Gradient scale | |
self.similarity_weight.grad *= 0.01 | |
self.similarity_bias.grad *= 0.01 | |
# Gradient clipping | |
clip_grad_norm_(self.parameters(), 3, norm_type=2) | |
def forward(self, utterances, hidden_init=None): | |
""" | |
Computes the embeddings of a batch of utterance spectrograms. | |
:param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape | |
(batch_size, n_frames, n_channels) | |
:param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, | |
batch_size, hidden_size). Will default to a tensor of zeros if None. | |
:return: the embeddings as a tensor of shape (batch_size, embedding_size) | |
""" | |
# Pass the input through the LSTM layers and retrieve all outputs, the final hidden state | |
# and the final cell state. | |
out, (hidden, cell) = self.lstm(utterances, hidden_init) | |
# We take only the hidden state of the last layer | |
embeds_raw = self.relu(self.linear(hidden[-1])) | |
# L2-normalize it | |
embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) | |
return embeds | |
def inference(self, utterances, hidden_init=None): | |
""" | |
Computes the embeddings of a batch of utterance spectrograms. | |
:param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape | |
(batch_size, n_frames, n_channels) | |
:param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, | |
batch_size, hidden_size). Will default to a tensor of zeros if None. | |
:return: the embeddings as a tensor of shape (batch_size, embedding_size) | |
""" | |
# Pass the input through the LSTM layers and retrieve all outputs, the final hidden state | |
# and the final cell state. | |
out, (hidden, cell) = self.lstm(utterances, hidden_init) | |
return hidden[-1] |