Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
import scipy
from torch.nn import functional as F
import torch
from torch import nn
import numpy as np
from modules.commons.common_layers import Permute
from modules.fastspeech.tts_modules import FFTBlocks
from modules.GenerSpeech.model.wavenet import fused_add_tanh_sigmoid_multiply, WN
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-4):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
n_dims = len(x.shape)
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
shape = [1, -1] + [1] * (n_dims - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvReluNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class ActNorm(nn.Module): # glow中的线性变换层
def __init__(self, channels, ddi=False, **kwargs):
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, reverse=False, **kwargs):
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = torch.sum(-self.logs) * x_len
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m ** 2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)
class InvConvNear(nn.Module): # 可逆卷积
def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs):
super().__init__()
assert (n_split % 2 == 0)
self.channels = channels
self.n_split = n_split
self.n_sqz = n_sqz
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.lu = lu
if lu:
# LU decomposition can slightly speed up the inverse
np_p, np_l, np_u = scipy.linalg.lu(w_init)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1)
eye = np.eye(*w_init.shape, dtype=float)
self.register_buffer('p', torch.Tensor(np_p.astype(float)))
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True)
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True)
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True)
self.register_buffer('l_mask', torch.Tensor(l_mask))
self.register_buffer('eye', torch.Tensor(eye))
else:
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs):
b, c, t = x.size()
assert (c % self.n_split == 0)
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)
if self.lu:
self.weight, log_s = self._get_weight()
logdet = log_s.sum()
logdet = logdet * (c / self.n_split) * x_len
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
if reverse:
if hasattr(self, "weight_inv"):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
logdet = -logdet
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def _get_weight(self):
l, log_s, u = self.l, self.log_s, self.u
l = l * self.l_mask + self.eye
u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s))
weight = torch.matmul(self.p, torch.matmul(l, u))
return weight, log_s
def store_inverse(self):
weight, _ = self._get_weight()
self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device)
class InvConv(nn.Module):
def __init__(self, channels, no_jacobian=False, lu=True, **kwargs):
super().__init__()
w_shape = [channels, channels]
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float)
LU_decomposed = lu
if not LU_decomposed:
# Sample a random orthogonal matrix:
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init)))
else:
np_p, np_l, np_u = scipy.linalg.lu(w_init)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
l_mask = np.tril(np.ones(w_shape, dtype=float), -1)
eye = np.eye(*w_shape, dtype=float)
self.register_buffer('p', torch.Tensor(np_p.astype(float)))
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float)))
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)))
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)))
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)))
self.l_mask = torch.Tensor(l_mask)
self.eye = torch.Tensor(eye)
self.w_shape = w_shape
self.LU = LU_decomposed
self.weight = None
def get_weight(self, device, reverse):
w_shape = self.w_shape
self.p = self.p.to(device)
self.sign_s = self.sign_s.to(device)
self.l_mask = self.l_mask.to(device)
self.eye = self.eye.to(device)
l = self.l * self.l_mask + self.eye
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s))
dlogdet = self.log_s.sum()
if not reverse:
w = torch.matmul(self.p, torch.matmul(l, u))
else:
l = torch.inverse(l.double()).float()
u = torch.inverse(u.double()).float()
w = torch.matmul(u, torch.matmul(l, self.p.inverse()))
return w.view(w_shape[0], w_shape[1], 1), dlogdet
def forward(self, x, x_mask=None, reverse=False, **kwargs):
"""
log-det = log|abs(|W|)| * pixels
"""
b, c, t = x.size()
if x_mask is None:
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
logdet = 0
if not reverse:
weight, dlogdet = self.get_weight(x.device, reverse)
z = F.conv1d(x, weight)
if logdet is not None:
logdet = logdet + dlogdet * x_len
return z, logdet
else:
if self.weight is None:
weight, dlogdet = self.get_weight(x.device, reverse)
else:
weight, dlogdet = self.weight, self.dlogdet
z = F.conv1d(x, weight)
if logdet is not None:
logdet = logdet - dlogdet * x_len
return z, logdet
def store_inverse(self):
self.weight, self.dlogdet = self.get_weight('cuda', reverse=True)
class Flip(nn.Module):
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
def store_inverse(self):
pass
class CouplingBlock(nn.Module): # 仿射耦合层
def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers,
gin_channels=0, p_dropout=0, sigmoid_scale=False,
share_cond_layers=False, wn=None):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.sigmoid_scale = sigmoid_scale
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1)
start = torch.nn.utils.weight_norm(start)
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(hidden_channels, in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels,
p_dropout, share_cond_layers)
if wn is not None:
self.wn.in_layers = wn.in_layers
self.wn.res_skip_layers = wn.res_skip_layers
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs):
if x_mask is None:
x_mask = 1
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]
x = self.start(x_0) * x_mask
x = self.wn(x, x_mask, g)
out = self.end(x)
z_0 = x_0
m = out[:, :self.in_channels // 2, :]
logs = out[:, self.in_channels // 2:, :]
if self.sigmoid_scale:
logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
if reverse:
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
logdet = torch.sum(-logs * x_mask, [1, 2])
else:
z_1 = (m + torch.exp(logs) * x_1) * x_mask
logdet = torch.sum(logs * x_mask, [1, 2])
z = torch.cat([z_0, z_1], 1)
return z, logdet
def store_inverse(self):
self.wn.remove_weight_norm()
class GlowFFTBlocks(FFTBlocks):
def __init__(self, hidden_size=128, gin_channels=256, num_layers=2, ffn_kernel_size=5,
dropout=None, num_heads=4, use_pos_embed=True, use_last_norm=True,
norm='ln', use_pos_embed_alpha=True):
super().__init__(hidden_size, num_layers, ffn_kernel_size, dropout, num_heads, use_pos_embed,
use_last_norm, norm, use_pos_embed_alpha)
self.inp_proj = nn.Conv1d(hidden_size + gin_channels, hidden_size, 1)
def forward(self, x, x_mask=None, g=None):
"""
:param x: [B, C_x, T]
:param x_mask: [B, 1, T]
:param g: [B, C_g, T]
:return: [B, C_x, T]
"""
if g is not None:
x = self.inp_proj(torch.cat([x, g], 1))
x = x.transpose(1, 2)
x = super(GlowFFTBlocks, self).forward(x, x_mask[:, 0] == 0)
x = x.transpose(1, 2)
return x
class TransformerCouplingBlock(nn.Module):
def __init__(self, in_channels, hidden_channels, n_layers,
gin_channels=0, p_dropout=0, sigmoid_scale=False):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.sigmoid_scale = sigmoid_scale
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1)
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(hidden_channels, in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
self.fft_blocks = GlowFFTBlocks(
hidden_size=hidden_channels,
ffn_kernel_size=3,
gin_channels=gin_channels,
num_layers=n_layers)
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs):
if x_mask is None:
x_mask = 1
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]
x = self.start(x_0) * x_mask
x = self.fft_blocks(x, x_mask, g)
out = self.end(x)
z_0 = x_0
m = out[:, :self.in_channels // 2, :]
logs = out[:, self.in_channels // 2:, :]
if self.sigmoid_scale:
logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
if reverse:
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
logdet = torch.sum(-logs * x_mask, [1, 2])
else:
z_1 = (m + torch.exp(logs) * x_1) * x_mask
logdet = torch.sum(logs * x_mask, [1, 2])
z = torch.cat([z_0, z_1], 1)
return z, logdet
def store_inverse(self):
pass
class FreqFFTCouplingBlock(nn.Module):
def __init__(self, in_channels, hidden_channels, n_layers,
gin_channels=0, p_dropout=0, sigmoid_scale=False):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.sigmoid_scale = sigmoid_scale
hs = hidden_channels
stride = 8
self.start = torch.nn.Conv2d(3, hs, kernel_size=stride * 2,
stride=stride, padding=stride // 2)
end = nn.ConvTranspose2d(hs, 2, kernel_size=stride, stride=stride)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = nn.Sequential(
nn.Conv2d(hs * 3, hs, 3, 1, 1),
nn.ReLU(),
nn.GroupNorm(4, hs),
nn.Conv2d(hs, hs, 3, 1, 1),
end
)
self.fft_v = FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers)
self.fft_h = nn.Sequential(
nn.Conv1d(hs, hs, 3, 1, 1),
nn.ReLU(),
nn.Conv1d(hs, hs, 3, 1, 1),
)
self.fft_g = nn.Sequential(
nn.Conv1d(
gin_channels - 160, hs, kernel_size=stride * 2, stride=stride, padding=stride // 2),
Permute(0, 2, 1),
FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers),
Permute(0, 2, 1),
)
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs):
g_, _ = unsqueeze(g)
g_mel = g_[:, :80]
g_txt = g_[:, 80:]
g_mel, _ = squeeze(g_mel)
g_txt, _ = squeeze(g_txt) # [B, C, T]
if x_mask is None:
x_mask = 1
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]
x = torch.stack([x_0, g_mel[:, :80], g_mel[:, 80:]], 1)
x = self.start(x) # [B, C, N_bins, T]
B, C, N_bins, T = x.shape
x_v = self.fft_v(x.permute(0, 3, 2, 1).reshape(B * T, N_bins, C))
x_v = x_v.reshape(B, T, N_bins, -1).permute(0, 3, 2, 1)
# x_v = x
x_h = self.fft_h(x.permute(0, 2, 1, 3).reshape(B * N_bins, C, T))
x_h = x_h.reshape(B, N_bins, -1, T).permute(0, 2, 1, 3)
# x_h = x
x_g = self.fft_g(g_txt)[:, :, None, :].repeat(1, 1, 10, 1)
x = torch.cat([x_v, x_h, x_g], 1)
out = self.end(x)
z_0 = x_0
m = out[:, 0]
logs = out[:, 1]
if self.sigmoid_scale:
logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
if reverse:
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
logdet = torch.sum(-logs * x_mask, [1, 2])
else:
z_1 = (m + torch.exp(logs) * x_1) * x_mask
logdet = torch.sum(logs * x_mask, [1, 2])
z = torch.cat([z_0, z_1], 1)
return z, logdet
def store_inverse(self):
pass
class Glow(nn.Module):
def __init__(self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_blocks,
n_layers,
p_dropout=0.,
n_split=4,
n_sqz=2,
sigmoid_scale=False,
gin_channels=0,
inv_conv_type='near',
share_cond_layers=False,
share_wn_layers=0,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_blocks = n_blocks
self.n_layers = n_layers
self.p_dropout = p_dropout
self.n_split = n_split
self.n_sqz = n_sqz
self.sigmoid_scale = sigmoid_scale
self.gin_channels = gin_channels
self.share_cond_layers = share_cond_layers
if gin_channels != 0 and share_cond_layers:
cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
wn = None
self.flows = nn.ModuleList()
for b in range(n_blocks):
self.flows.append(ActNorm(channels=in_channels * n_sqz))
if inv_conv_type == 'near':
self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz))
if inv_conv_type == 'invconv':
self.flows.append(InvConv(channels=in_channels * n_sqz))
if share_wn_layers > 0:
if b % share_wn_layers == 0:
wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz,
p_dropout, share_cond_layers)
self.flows.append(
CouplingBlock(
in_channels * n_sqz,
hidden_channels,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
n_layers=n_layers,
gin_channels=gin_channels * n_sqz,
p_dropout=p_dropout,
sigmoid_scale=sigmoid_scale,
share_cond_layers=share_cond_layers,
wn=wn
))
def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False):
logdet_tot = 0
if not reverse:
flows = self.flows
else:
flows = reversed(self.flows)
if return_hiddens:
hs = []
if self.n_sqz > 1:
x, x_mask_ = squeeze(x, x_mask, self.n_sqz)
if g is not None:
g, _ = squeeze(g, x_mask, self.n_sqz)
x_mask = x_mask_
if self.share_cond_layers and g is not None:
g = self.cond_layer(g)
for f in flows:
x, logdet = f(x, x_mask, g=g, reverse=reverse)
if return_hiddens:
hs.append(x)
logdet_tot += logdet
if self.n_sqz > 1:
x, x_mask = unsqueeze(x, x_mask, self.n_sqz)
if return_hiddens:
return x, logdet_tot, hs
return x, logdet_tot
def store_inverse(self):
def remove_weight_norm(m):
try:
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)
for f in self.flows:
f.store_inverse()
class GlowV2(nn.Module):
def __init__(self,
in_channels=256,
hidden_channels=256,
kernel_size=3,
dilation_rate=1,
n_blocks=8,
n_layers=4,
p_dropout=0.,
n_split=4,
n_split_blocks=3,
sigmoid_scale=False,
gin_channels=0,
share_cond_layers=True):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_blocks = n_blocks
self.n_layers = n_layers
self.p_dropout = p_dropout
self.n_split = n_split
self.n_split_blocks = n_split_blocks
self.sigmoid_scale = sigmoid_scale
self.gin_channels = gin_channels
self.cond_layers = nn.ModuleList()
self.share_cond_layers = share_cond_layers
self.flows = nn.ModuleList()
in_channels = in_channels * 2
for l in range(n_split_blocks):
blocks = nn.ModuleList()
self.flows.append(blocks)
gin_channels = gin_channels * 2
if gin_channels != 0 and share_cond_layers:
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
self.cond_layers.append(torch.nn.utils.weight_norm(cond_layer, name='weight'))
for b in range(n_blocks):
blocks.append(ActNorm(channels=in_channels))
blocks.append(InvConvNear(channels=in_channels, n_split=n_split))
blocks.append(CouplingBlock(
in_channels,
hidden_channels,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
n_layers=n_layers,
gin_channels=gin_channels,
p_dropout=p_dropout,
sigmoid_scale=sigmoid_scale,
share_cond_layers=share_cond_layers))
def forward(self, x=None, x_mask=None, g=None, reverse=False, concat_zs=True,
noise_scale=0.66, return_hiddens=False):
logdet_tot = 0
if not reverse:
flows = self.flows
assert x_mask is not None
zs = []
if return_hiddens:
hs = []
for i, blocks in enumerate(flows):
x, x_mask = squeeze(x, x_mask)
g_ = None
if g is not None:
g, _ = squeeze(g)
if self.share_cond_layers:
g_ = self.cond_layers[i](g)
else:
g_ = g
for layer in blocks:
x, logdet = layer(x, x_mask=x_mask, g=g_, reverse=reverse)
if return_hiddens:
hs.append(x)
logdet_tot += logdet
if i == self.n_split_blocks - 1:
zs.append(x)
else:
x, z = torch.chunk(x, 2, 1)
zs.append(z)
if concat_zs:
zs = [z.reshape(x.shape[0], -1) for z in zs]
zs = torch.cat(zs, 1) # [B, C*T]
if return_hiddens:
return zs, logdet_tot, hs
return zs, logdet_tot
else:
flows = reversed(self.flows)
if x is not None:
assert isinstance(x, list)
zs = x
else:
B, _, T = g.shape
zs = self.get_prior(B, T, g.device, noise_scale)
zs_ori = zs
if g is not None:
g_, g = g, []
for i in range(len(self.flows)):
g_, _ = squeeze(g_)
g.append(self.cond_layers[i](g_) if self.share_cond_layers else g_)
else:
g = [None for _ in range(len(self.flows))]
if x_mask is not None:
x_masks = []
for i in range(len(self.flows)):
x_mask, _ = squeeze(x_mask)
x_masks.append(x_mask)
else:
x_masks = [None for _ in range(len(self.flows))]
x_masks = x_masks[::-1]
g = g[::-1]
zs = zs[::-1]
x = None
for i, blocks in enumerate(flows):
x = zs[i] if x is None else torch.cat([x, zs[i]], 1)
for layer in reversed(blocks):
x, logdet = layer(x, x_masks=x_masks[i], g=g[i], reverse=reverse)
logdet_tot += logdet
x, _ = unsqueeze(x)
return x, logdet_tot, zs_ori
def store_inverse(self):
for f in self.modules():
if hasattr(f, 'store_inverse') and f != self:
f.store_inverse()
def remove_weight_norm(m):
try:
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)
def get_prior(self, B, T, device, noise_scale=0.66):
C = 80
zs = []
for i in range(len(self.flows)):
C, T = C, T // 2
if i == self.n_split_blocks - 1:
zs.append(torch.randn(B, C * 2, T).to(device) * noise_scale)
else:
zs.append(torch.randn(B, C, T).to(device) * noise_scale)
return zs
def squeeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
t = (t // n_sqz) * n_sqz
x = x[:, :, :t]
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
if x_mask is not None:
x_mask = x_mask[:, :, n_sqz - 1::n_sqz]
else:
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
return x_sqz * x_mask, x_mask
def unsqueeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
if x_mask is not None:
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
else:
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
return x_unsqz * x_mask, x_mask