AudioGPT / NeuralSeq /modules /portaspeech /portaspeech_flow.py
Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
import torch
import torch.distributions as dist
from torch import nn
from modules.commons.normalizing_flow.glow_modules import Glow
from modules.portaspeech.portaspeech import PortaSpeech
from utils.hparams import hparams
class PortaSpeechFlow(PortaSpeech):
def __init__(self, ph_dict_size, word_dict_size, out_dims=None):
super().__init__(ph_dict_size, word_dict_size, out_dims)
cond_hs = 80
if hparams.get('use_txt_cond', True):
cond_hs = cond_hs + hparams['hidden_size']
if hparams.get('use_latent_cond', False):
cond_hs = cond_hs + hparams['latent_size']
if hparams['use_cond_proj']:
self.g_proj = nn.Conv1d(cond_hs, 160, 5, padding=2)
cond_hs = 160
self.post_flow = Glow(
80, hparams['post_glow_hidden'], hparams['post_glow_kernel_size'], 1,
hparams['post_glow_n_blocks'], hparams['post_glow_n_block_layers'],
n_split=4, n_sqz=2,
gin_channels=cond_hs,
share_cond_layers=hparams['post_share_cond_layers'],
share_wn_layers=hparams['share_wn_layers'],
sigmoid_scale=hparams['sigmoid_scale']
)
self.prior_dist = dist.Normal(0, 1)
def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None,
spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None,
forward_post_glow=True, two_stage=True, global_step=None, **kwargs):
is_training = self.training
train_fvae = not (forward_post_glow and two_stage)
if not train_fvae:
self.eval()
with torch.set_grad_enabled(mode=train_fvae):
ret = super(PortaSpeechFlow, self).forward(
txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph,
spk_embed, spk_id, pitch, infer, tgt_mels, global_step, **kwargs)
if (forward_post_glow or not two_stage) and hparams['use_post_flow']:
self.run_post_glow(tgt_mels, infer, is_training, ret)
return ret
def run_post_glow(self, tgt_mels, infer, is_training, ret):
x_recon = ret['mel_out'].transpose(1, 2)
g = x_recon
B, _, T = g.shape
if hparams.get('use_txt_cond', True):
g = torch.cat([g, ret['decoder_inp'].transpose(1, 2)], 1)
if hparams.get('use_latent_cond', False):
g_z = ret['z_p'][:, :, :, None].repeat(1, 1, 1, 4).reshape(B, -1, T)
g = torch.cat([g, g_z], 1)
if hparams['use_cond_proj']:
g = self.g_proj(g)
prior_dist = self.prior_dist
if not infer:
if is_training:
self.post_flow.train()
nonpadding = ret['nonpadding'].transpose(1, 2)
y_lengths = nonpadding.sum(-1)
if hparams['detach_postflow_input']:
g = g.detach()
tgt_mels = tgt_mels.transpose(1, 2)
z_postflow, ldj = self.post_flow(tgt_mels, nonpadding, g=g)
ldj = ldj / y_lengths / 80
ret['z_pf'], ret['ldj_pf'] = z_postflow, ldj
ret['postflow'] = -prior_dist.log_prob(z_postflow).mean() - ldj.mean()
if torch.isnan(ret['postflow']):
ret['postflow'] = None
else:
nonpadding = torch.ones_like(x_recon[:, :1, :])
z_post = torch.randn(x_recon.shape).to(g.device) * hparams['noise_scale']
x_recon, _ = self.post_flow(z_post, nonpadding, g, reverse=True)
ret['mel_out'] = x_recon.transpose(1, 2)