AudioGPT / audio_foundation_models.py
Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural'))
import matplotlib
import librosa
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
import re
import uuid
import soundfile
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import cv2
import einops
from einops import repeat
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
from audio_to_text.inference_waveform import AudioCapModel
import whisper
from text_to_speech.TTS_binding import TTSInference
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
from utils.os_utils import move_file
import scipy.io.wavfile as wavfile
from audio_infer.utils import config as detection_config
from audio_infer.pytorch.models import PVT
from src.models import BinauralNetwork
from sound_extraction.model.LASSNet import LASSNet
from sound_extraction.utils.stft import STFT
from sound_extraction.utils.wav_io import load_wav, save_wav
from target_sound_detection.src import models as tsd_models
from target_sound_detection.src.models import event_labels
from target_sound_detection.src.utils import median_filter, decode_with_timestamps
import clip
def prompts(name, description):
def decorator(func):
func.name = name
func.description = description
return func
return decorator
def initialize_model(config, ckpt, device):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
model = model.to(device)
model.cond_stage_model.to(model.device)
model.cond_stage_model.device = model.device
sampler = DDIMSampler(model)
return sampler
def initialize_model_inpaint(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
print(model.device,device,model.cond_stage_model.device)
sampler = DDIMSampler(model)
return sampler
def select_best_audio(prompt,wav_list):
clap_model = CLAPWrapper('text_to_audio/Make_An_Audio/useful_ckpts/CLAP/CLAP_weights_2022.pth','text_to_audio/Make_An_Audio/useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
text_embeddings = clap_model.get_text_embeddings([prompt])
score_list = []
for data in wav_list:
sr,wav = data
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
score_list.append(score)
max_index = np.array(score_list).argmax()
print(score_list,max_index)
return wav_list[max_index]
class T2I:
def __init__(self, device):
print("Initializing T2I to %s" % device)
self.device = device
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
self.pipe.to(device)
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
print(f'{text} refined to {refined_text}')
image = self.pipe(refined_text).images[0]
image.save(image_filename)
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
@prompts(name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ")
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class T2A:
def __init__(self, device):
print("Initializing Make-An-Audio to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/text-to-audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
SAMPLE_RATE = 16000
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
c = self.sampler.model.get_learned_conditioning(n_samples * [text])
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S = ddim_steps,
conditioning = c,
batch_size = n_samples,
shape = shape,
verbose = False,
unconditional_guidance_scale = scale,
unconditional_conditioning = uc,
x_T = start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx,spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE,wav))
best_wav = select_best_audio(text, wav_list)
return best_wav
@prompts(name="Generate Audio From User Input Text",
description="useful for when you want to generate an audio "
"from a user input text and it saved it to a file."
"The input to this tool should be a string, "
"representing the text used to generate audio.")
def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
melbins,mel_len = 80,624
with torch.no_grad():
result = self.txt2audio(
text = text,
H = melbins,
W = mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
return audio_filename
class I2A:
def __init__(self, device):
print("Initializing Make-An-Audio-Image to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
SAMPLE_RATE = 16000
n_samples = 1 # only support 1 sample
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
#image = Image.fromarray(image)
image = Image.open(image)
image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
c = image_embedding.repeat(n_samples, 1, 1)
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
x_T=start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx,spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE,wav))
best_wav = wav_list[0]
return best_wav
@prompts(name="Generate Audio From The Image",
description="useful for when you want to generate an audio "
"based on an image. "
"The input to this tool should be a string, "
"representing the image_path. ")
def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
melbins,mel_len = 80,624
with torch.no_grad():
result = self.img2audio(
image=image,
H=melbins,
W=mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
return audio_filename
class TTS:
def __init__(self, device=None):
self.model = TTSInference(device)
@prompts(name="Synthesize Speech Given the User Input Text",
description="useful for when you want to convert a user input text into speech audio it saved it to a file."
"The input to this tool should be a string, "
"representing the text used to be converted to speech.")
def inference(self, text):
inp = {"text": text}
out = self.model.infer_once(inp)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, out, samplerate = 22050)
return audio_filename
class T2S:
def __init__(self, device= None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing DiffSinger to %s" % device)
self.device = device
self.exp_name = 'checkpoints/0831_opencpop_ds1000'
self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml'
self.set_model_hparams()
self.pipe = DiffSingerE2EInfer(self.hp, device)
self.default_inp = {
'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP',
'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest',
'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590'
}
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
self.hp = hp
@prompts(name="Generate Singing Voice From User Input Text, Note and Duration Sequence",
description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) "
"and save it to a file."
"If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence. "
"If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. "
"Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx."
"The input to this tool should be a comma seperated string of three, "
"representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided. ")
def inference(self, inputs):
self.set_model_hparams()
val = inputs.split(",")
key = ['text', 'notes', 'notes_duration']
try:
inp = {k: v for k, v in zip(key, val)}
wav = self.pipe.infer_once(inp)
except:
print('Error occurs. Generate default audio sample.\n')
inp = self.default_inp
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(f"Processed T2S.run, audio_filename: {audio_filename}")
return audio_filename
class TTS_OOD:
def __init__(self, device):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Initializing GenerSpeech to %s" % device)
self.device = device
self.exp_name = 'checkpoints/GenerSpeech'
self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml'
self.set_model_hparams()
self.pipe = GenerSpeechInfer(self.hp, device)
def set_model_hparams(self):
set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False)
f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn)
hp['f0_mean'] = float(hp['f0_mean'])
hp['f0_std'] = float(hp['f0_std'])
hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt'
self.hp = hp
@prompts(name="Style Transfer",
description="useful for when you want to generate speech samples with styles "
"(e.g., timbre, emotion, and prosody) derived from a reference custom voice. "
"Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx."
"The input to this tool should be a comma seperated string of two, "
"representing reference audio path and input text. " )
def inference(self, inputs):
self.set_model_hparams()
key = ['ref_audio', 'text']
val = inputs.split(",")
inp = {k: v for k, v in zip(key, val)}
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(
f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
return audio_filename
class Inpaint:
def __init__(self, device):
print("Initializing Make-An-Audio-inpaint to %s" % device)
self.device = device
self.sampler = initialize_model_inpaint('text_to_audio/Make_An_Audio/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/inpaint7_epoch00047.ckpt')
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device)
self.cmap_transform = matplotlib.cm.viridis
def make_batch_sd(self, mel, mask, num_samples=1):
mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
masked_mel = (1 - mask) * mel
mel = mel * 2 - 1
mask = mask * 2 - 1
masked_mel = masked_mel * 2 -1
batch = {
"mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
"mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
"masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
}
return batch
def gen_mel(self, input_audio_path):
SAMPLE_RATE = 16000
sr, ori_wav = wavfile.read(input_audio_path)
print("gen_mel")
print(sr,ori_wav.shape,ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
if len(ori_wav.shape)==2:# stereo
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr,ori_wav.shape,ori_wav)
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
mel_len,hop_size = 848,256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def gen_mel_audio(self, input_audio):
SAMPLE_RATE = 16000
sr,ori_wav = input_audio
print("gen_mel_audio")
print(sr,ori_wav.shape,ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0
if len(ori_wav.shape)==2:# stereo
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr,ori_wav.shape,ori_wav)
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
mel_len,hop_size = 848,256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
model = self.sampler.model
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
shape = (c.shape[1]-1,)+c.shape[2:]
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
mask = batch["mask"]# [-1,1]
mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
inpainted = (1-mask)*mel+mask*predicted_mel
inpainted = inpainted.cpu().numpy().squeeze()
inapint_wav = self.vocoder.vocode(inpainted)
return inpainted, inapint_wav
def predict(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100):
SAMPLE_RATE = 16000
torch.set_grad_enabled(False)
mel_img = Image.open(mel_and_mask['image'])
mask_img = Image.open(mel_and_mask["mask"])
show_mel = np.array(mel_img.convert("L"))/255
mask = np.array(mask_img.convert("L"))/255
mel_bins,mel_len = 80,848
input_mel = self.gen_mel_audio(input_audio)[:,:mel_len]
mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)
print(mask.shape,input_mel.shape)
with torch.no_grad():
batch = self.make_batch_sd(input_mel,mask,num_samples=1)
inpainted,gen_wav = self.inpaint(
batch=batch,
seed=seed,
ddim_steps=ddim_steps,
num_samples=1,
H=mel_bins, W=mel_len
)
inpainted = inpainted[:,:show_mel.shape[1]]
color_mel = self.cmap_transform(inpainted)
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
image = Image.fromarray((color_mel*255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, gen_wav, samplerate = 16000)
return image_filename, audio_filename
@prompts(name="Audio Inpainting",
description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, "
"this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. " )
def inference(self, input_audio_path):
crop_len = 500
crop_mel = self.gen_mel(input_audio_path)[:,:crop_len]
color_mel = self.cmap_transform(crop_mel)
image = Image.fromarray((color_mel*255).astype(np.uint8))
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
image.save(image_filename)
return image_filename
class ASR:
def __init__(self, device):
print("Initializing Whisper to %s" % device)
self.device = device
self.model = whisper.load_model("base", device=device)
@prompts(name="Transcribe speech",
description="useful for when you want to know the text corresponding to a human speech, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. " )
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(self.device)
_, probs = self.model.detect_language(mel)
options = whisper.DecodingOptions()
result = whisper.decode(self.model, mel, options)
return result.text
class A2T:
def __init__(self, device):
print("Initializing Audio-To-Text Model to %s" % device)
self.device = device
self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm")
@prompts(name="Generate Text From The Audio",
description="useful for when you want to describe an audio in text, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. " )
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
caption_text = self.model(audio)
return caption_text[0]
class SoundDetection:
def __init__(self, device):
self.device = device
self.sample_rate = 32000
self.window_size = 1024
self.hop_size = 320
self.mel_bins = 64
self.fmin = 50
self.fmax = 14000
self.model_type = 'PVT'
self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth'
self.classes_num = detection_config.classes_num
self.labels = detection_config.labels
self.frames_per_second = self.sample_rate // self.hop_size
# Model = eval(self.model_type)
self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size,
hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax,
classes_num=self.classes_num)
checkpoint = torch.load(self.checkpoint_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model'])
self.model.to(device)
@prompts(name="Detect The Sound Event From The Audio",
description="useful for when you want to know what event in the audio and the sound event start or end time, it will return an image "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. " )
def inference(self, audio_path):
# Forward
(waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True)
waveform = waveform[None, :] # (1, audio_length)
waveform = torch.from_numpy(waveform)
waveform = waveform.to(self.device)
# Forward
with torch.no_grad():
self.model.eval()
batch_output_dict = self.model(waveform, None)
framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0]
"""(time_steps, classes_num)"""
# print('Sound event detection result (time_steps x classes_num): {}'.format(
# framewise_output.shape))
import numpy as np
import matplotlib.pyplot as plt
sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1]
top_k = 10 # Show top results
top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]]
"""(time_steps, top_k)"""
# Plot result
stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size,
hop_length=self.hop_size, window='hann', center=True)
frames_num = stft.shape[-1]
fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4))
axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet')
axs[0].set_ylabel('Frequency bins')
axs[0].set_title('Log spectrogram')
axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1)
axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second))
axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second))
axs[1].yaxis.set_ticks(np.arange(0, top_k))
axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0 : top_k]])
axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3)
axs[1].set_xlabel('Seconds')
axs[1].xaxis.set_ticks_position('bottom')
plt.tight_layout()
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
plt.savefig(image_filename)
return image_filename
class SoundExtraction:
def __init__(self, device):
self.device = device
self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt'
self.stft = STFT()
import torch.nn as nn
self.model = nn.DataParallel(LASSNet(device)).to(device)
checkpoint = torch.load(self.model_file)
self.model.load_state_dict(checkpoint['model'])
self.model.eval()
@prompts(name="Extract Sound Event From Mixture Audio Based On Language Description",
description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, "
"receives audio_path and text as input. "
"The input to this tool should be a comma seperated string of two, "
"representing mixture audio path and input text." )
def inference(self, inputs):
#key = ['ref_audio', 'text']
val = inputs.split(",")
audio_path = val[0] # audio_path, text
text = val[1]
waveform = load_wav(audio_path)
waveform = torch.tensor(waveform).transpose(1,0)
mixed_mag, mixed_phase = self.stft.transform(waveform)
text_query = ['[CLS] ' + text]
mixed_mag = mixed_mag.transpose(2,1).unsqueeze(0).to(self.device)
est_mask = self.model(mixed_mag, text_query)
est_mag = est_mask * mixed_mag
est_mag = est_mag.squeeze(1)
est_mag = est_mag.permute(0, 2, 1)
est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase)
est_wav = est_wav.squeeze(0).squeeze(0).numpy()
#est_path = f'output/est{i}.wav'
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
print('audio_filename ', audio_filename)
save_wav(est_wav, audio_filename)
return audio_filename
class Binaural:
def __init__(self, device):
self.device = device
self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net'
self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions2.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions3.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions4.txt',
'mono2binaural/useful_ckpts/m2b/tx_positions5.txt']
self.net = BinauralNetwork(view_dim=7,
warpnet_layers=4,
warpnet_channels=64,
)
self.net.load_from_file(self.model_file)
self.sr = 48000
@prompts(name="Sythesize Binaural Audio From A Mono Audio Input",
description="useful for when you want to transfer your mono audio into binaural audio, "
"receives audio_path as input. "
"The input to this tool should be a string, "
"representing the audio_path. " )
def inference(self, audio_path):
mono, sr = librosa.load(path=audio_path, sr=self.sr, mono=True)
mono = torch.from_numpy(mono)
mono = mono.unsqueeze(0)
import numpy as np
import random
rand_int = random.randint(0,4)
view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32)
view = torch.from_numpy(view)
if not view.shape[-1] * 400 == mono.shape[-1]:
mono = mono[:,:(mono.shape[-1]//400)*400] #
if view.shape[1]*400 > mono.shape[1]:
m_a = view.shape[1] - mono.shape[-1]//400
rand_st = random.randint(0,m_a)
view = view[:,m_a:m_a+(mono.shape[-1]//400)] #
# binauralize and save output
self.net.eval().to(self.device)
mono, view = mono.to(self.device), view.to(self.device)
chunk_size = 48000 # forward in chunks of 1s
rec_field = 1000 # add 1000 samples as "safe bet" since warping has undefined rec. field
rec_field -= rec_field % 400 # make sure rec_field is a multiple of 400 to match audio and view frequencies
chunks = [
{
"mono": mono[:, max(0, i-rec_field):i+chunk_size],
"view": view[:, max(0, i-rec_field)//400:(i+chunk_size)//400]
}
for i in range(0, mono.shape[-1], chunk_size)
]
for i, chunk in enumerate(chunks):
with torch.no_grad():
mono = chunk["mono"].unsqueeze(0)
view = chunk["view"].unsqueeze(0)
binaural = self.net(mono, view).squeeze(0)
if i > 0:
binaural = binaural[:, -(mono.shape[-1]-rec_field):]
chunk["binaural"] = binaural
binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1)
binaural = torch.clamp(binaural, min=-1, max=1).cpu()
#binaural = chunked_forwarding(net, mono, view)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
import torchaudio
torchaudio.save(audio_filename, binaural, sr)
#soundfile.write(audio_filename, binaural, samplerate = 48000)
print(f"Processed Binaural.run, audio_filename: {audio_filename}")
return audio_filename
class TargetSoundDetection:
def __init__(self, device):
self.device = device
self.MEL_ARGS = {
'n_mels': 64,
'n_fft': 2048,
'hop_length': int(22050 * 20 / 1000),
'win_length': int(22050 * 40 / 1000)
}
self.EPS = np.spacing(1)
self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
self.event_labels = event_labels
self.id_to_event = {i : label for i, label in enumerate(self.event_labels)}
config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth', map_location='cpu')
config_parameters = dict(config)
config_parameters['tao'] = 0.6
if 'thres' not in config_parameters.keys():
config_parameters['thres'] = 0.5
if 'time_resolution' not in config_parameters.keys():
config_parameters['time_resolution'] = 125
model_parameters = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt'
, map_location=lambda storage, loc: storage) # load parameter
self.model = getattr(tsd_models, config_parameters['model'])(config_parameters,
inputdim=64, outputdim=2, time_resolution=config_parameters['time_resolution'], **config_parameters['model_args'])
self.model.load_state_dict(model_parameters)
self.model = self.model.to(self.device).eval()
self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth')
self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth')
def extract_feature(self, fname):
import soundfile as sf
y, sr = sf.read(fname, dtype='float32')
print('y ', y.shape)
ti = y.shape[0]/sr
if y.ndim > 1:
y = y.mean(1)
y = librosa.resample(y, sr, 22050)
lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T
return lms_feature,ti
def build_clip(self, text):
text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"]
text_features = self.clip_model.encode_text(text)
return text_features
def cal_similarity(self, target, retrievals):
ans = []
for name in retrievals.keys():
tmp = retrievals[name]
s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0)
ans.append(s.item())
return ans.index(max(ans))
@prompts(name="Target Sound Detection",
description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model, "
"receives text description and audio_path as input. "
"The input to this tool should be a comma seperated string of two, "
"representing audio path and the text description. " )
def inference(self, inputs):
audio_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
target_emb = self.build_clip(text) # torch type
idx = self.cal_similarity(target_emb, self.re_embeds)
target_event = self.id_to_event[idx]
embedding = self.ref_mel[target_event]
embedding = torch.from_numpy(embedding)
embedding = embedding.unsqueeze(0).to(self.device).float()
inputs,ti = self.extract_feature(audio_path)
inputs = torch.from_numpy(inputs)
inputs = inputs.unsqueeze(0).to(self.device).float()
decision, decision_up, logit = self.model(inputs, embedding)
pred = decision_up.detach().cpu().numpy()
pred = pred[:,:,0]
frame_num = decision_up.shape[1]
time_ratio = ti / frame_num
filtered_pred = median_filter(pred, window_size=1, threshold=0.5)
time_predictions = []
for index_k in range(filtered_pred.shape[0]):
decoded_pred = []
decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k,:])
if len(decoded_pred_) == 0: # neg deal
decoded_pred_.append((target_event, 0, 0))
decoded_pred.append(decoded_pred_)
for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1
cur_pred = pred[num_batch]
# Save each frame output, for later visualization
label_prediction = decoded_pred[num_batch] # frame predict
for event_label, onset, offset in label_prediction:
time_predictions.append({
'onset': onset*time_ratio,
'offset': offset*time_ratio,})
ans = ''
for i,item in enumerate(time_predictions):
ans = ans + 'segment' + str(i+1) + ' start_time: ' + str(item['onset']) + ' end_time: ' + str(item['offset']) + '\t'
return ans