AudioGPT / sound_extraction /model /text_encoder.py
Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
import torch
import torch.nn as nn
from transformers import *
import warnings
warnings.filterwarnings('ignore')
# pretrained model name: (model class, model tokenizer, output dimension, token style)
MODELS = {
'prajjwal1/bert-mini': (BertModel, BertTokenizer),
}
class Text_Encoder(nn.Module):
def __init__(self, device):
super(Text_Encoder, self).__init__()
self.base_model = 'prajjwal1/bert-mini'
self.dropout = 0.1
self.tokenizer = MODELS[self.base_model][1].from_pretrained(self.base_model)
self.bert_layer = MODELS[self.base_model][0].from_pretrained(self.base_model,
add_pooling_layer=False,
hidden_dropout_prob=self.dropout,
attention_probs_dropout_prob=self.dropout,
output_hidden_states=True)
self.linear_layer = nn.Sequential(nn.Linear(256, 256), nn.ReLU(inplace=True))
self.device = device
def tokenize(self, caption):
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenized = self.tokenizer(caption, add_special_tokens=False, padding=True, return_tensors='pt')
input_ids = tokenized['input_ids']
attns_mask = tokenized['attention_mask']
input_ids = input_ids.to(self.device)
attns_mask = attns_mask.to(self.device)
return input_ids, attns_mask
def forward(self, input_ids, attns_mask):
# input_ids, attns_mask = self.tokenize(caption)
output = self.bert_layer(input_ids=input_ids, attention_mask=attns_mask)[0]
cls_embed = output[:, 0, :]
text_embed = self.linear_layer(cls_embed)
return text_embed, output # text_embed: (batch, hidden_size)